Method for preparing stainless reinforcing steel bar resistant to corrosion of chloride ions

    公开(公告)号:US10041164B2

    公开(公告)日:2018-08-07

    申请号:US15070287

    申请日:2016-03-15

    Abstract: This present invention provides a method for preparing a stainless reinforcing steel bar resistant to corrosion of chloride ions, and belongs to the technical field of corrosion-resistant materials. This method particularly comprises the steps of: selecting a reinforcing steel bar blank, and performing oil removing, rust removing, water washing, and drying treatments on the surface of the reinforcing steel bar blank to be treated, or directly performing sand blasting or shot blasting on a reinforcing steel bar blank whose surface is only slightly rusted; placing the reinforcing steel bar blank in a chromium-containing environment, and keeping at a certain temperature for a certain time such that chromium in the environment is capable of diffusing into the surface of the reinforcing steel bar blank to form a chromium-containing diffusion layer, wherein an area in the diffusion layer where the weight content of Cr exceeds 12% meets the basic component requirements for a stainless steel, and this area is the effective diffusion layer described in this invention; and performing cooling treatment on the heat diffusion treated reinforcing steel bar. In this invention, a reinforcing steel bar blank is pre-formed, a heat diffusion technique is optimized, and the corrosion resistance to chloride ions of the stainless reinforcing steel bar of this invention is superior to that of the 316L stainless reinforcing steel bar.

    PROCESS FOR EVALUATING CORROSION INHIBITOR BASED ON HIGH-THROUGHPUT CORROSION CHIP

    公开(公告)号:US20230408398A1

    公开(公告)日:2023-12-21

    申请号:US17936946

    申请日:2022-09-30

    CPC classification number: G01N17/006

    Abstract: The present disclosure discloses a process for evaluating a corrosion inhibitor based on a high-throughput corrosion chip. In the present disclosure, a high-throughput corrosion chip is first prepared by using a chip spotter, and only a corrosion inhibitor and a corrosive substance need to be spotted on a metal sample to quickly, efficiently, and accurately evaluate performance of a corrosion inhibitor formulation, to meet corrosion test conditions such as different substances, different concentrations, and different corrosion duration; and then a corrosion degree of each measurement point in the high-throughput corrosion chip is identified and quantified by using a laser scanning confocal microscope. The high-throughput corrosion chip prepared by using the foregoing method can bear 10-1000 measurement points, and these measurement points can reflect corrosion effects of different inhibitor formulations in different corrosion duration.

Patent Agency Ranking