Abstract:
Devices, systems, and methods of evaluating risk associated with a condition of the vessel and issuing an automatic recommendation based on co-registered physiological measurements are disclosed. The includes steps of obtaining image data for the vessel of the patient, obtaining physiological measurements for the vessel of the patient, co-registering the obtained physiological measurements with the obtained image data such that the physiological measurements are associated with corresponding portions of the vessel of the patient, analyzing the co-registered physiology measurements to identify a region of interest, and outputting, to a user interface, a suggested diagnostic procedure for the region of interest based on the analysis of the co-registered physiology measurements.
Abstract:
The present invention generally relates to methods, systems, and apparatuses for determining the degree of improvement after a therapeutic procedure. The method can involve determining a baseline measurement prior to conducting a therapeutic procedure, conducting the therapeutic procedure, and determining a post-therapy measurement after conducting the therapeutic procedure. The method further involves comparing the post-therapy measurement to the baseline measurement, thereby determining the degree of improvement after conducting the therapeutic procedure.
Abstract:
One aspect of the present disclosure involves a method. The method includes retrieving, from a diagnostic medical device, identification information that identifies a feature of the diagnostic medical device. A proprietary signal is generated in response to the identification information. The proprietary signal is sent to a medical measurement system to facilitate an unlocking of one or more programs to be executed on the medical measurement system. Another aspect of the present disclosure involves a method. The method includes detecting, through an electronic interface device, a coupling of a remote diagnostic medical device. Thereafter, a proprietary signal is received from the electronic interface device. An identity feature of the remote diagnostic medical device is ascertained based on the proprietary signal. One or more programs are unlocked for execution if the identity feature of the remote diagnostic medical device matches a predetermined identity feature.
Abstract:
Devices, systems, and methods of evaluating a vascular system of a patient, are provided. In some instances, the method includes obtaining external imaging data associated with the heart; obtaining cardiac test data associated with the heart; generating a three-dimensional graphical representation of the heart using the external imaging data and the cardiac test data; and outputting the graphical representation of the heart to a display device, wherein the graphical representation of the heart includes a graphical representation of the cardiac test data. Corresponding systems and devices are also provided.
Abstract:
Devices, systems, and methods directed to evaluating a vessel of a patient are provided. The method includes outputting, to a display, a screen display including: a visual representation of a pressure ratio of pressure measurements obtained by first and second instruments positioned within a vessel while the second instrument is moved longitudinally through the vessel and the first instrument remains stationary within the vessel; and a visual representation of the vessel; receiving a user input to modify one of the visual representations of the pressure ratio and the vessel to simulate a therapeutic procedure; and updating the screen display, in response to the user input, including: modifying the selected one of the visual representation of the pressure ratio and the vessel based on the received user input; and correspondingly modifying the unselected one of the visual representation of the pressure ratio and the vessel.
Abstract:
Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to assess the severity of a stenosis in the coronary arteries without the administration of a hyperemic agent. Further, in some implementations devices, systems, and methods of the present disclosure are configured to normalize and/or temporally align pressure measurements from two different pressure sensing instruments. Further still, in some instances devices, systems, and methods of the present disclosure are configured to exclude outlier cardiac cycles from calculations utilized to evaluate a vessel, including providing visual indication to a user that the cardiac cycles have been excluded.
Abstract:
Devices, systems, and methods for visually depicting a vessel and evaluating treatment options are disclosed. The methods can include obtaining proximal pressure measurements from a proximal pressure sensing component positioned within a vessel of a patient; obtaining distal pressure measurements from multiple pressure sensing components positioned within the vessel of the patient, wherein the multiple pressure sensing components are positioned distal of the proximal pressure sensing component and are spaced along a length of the vessel; and outputting a screen display having a visual representation of the proximal and distal pressure measurements.
Abstract:
Devices, systems, and methods automatically detecting anomalous waveforms and eliminating these waveforms from physiologic measurements are disclosed. For example, in some instances a method includes collecting a pressure data from an intravascular device positioned within the vessel of the patient, the pressure data including a pressure waveform for each cardiac cycle of the patient; comparing the pressure waveform for each cardiac cycle of the patient to a reference pressure waveform to identify an anomalous pressure waveform; and calculating a pressure ratio utilizing the pressure data from the intravascular device, wherein data from the anomalous pressure waveform is excluded from the calculation.
Abstract:
In one embodiment, a sensing guidewire for performing atraumatic intravascular physiologic measurements includes an elongated core wire and a sensor disposed at a distal end portion thereof. A flexure is disposed in the core wire proximal to the sensor housing. The flexure is substantially more flexible than regions of the core wire disposed on either side of the flexure, and enables a distal end portion of the guide wire to conform to and rest against a wall of vascular structure, such as an aneurism, without exerting an undue outward pressure thereon in response to making any contact with the wall.
Abstract:
Devices, systems, and methods of evaluating risk associated with a condition of the vessel and providing an objective intervention recommendation based on the evaluated risk are disclosed. The method includes steps of obtaining physiologic measurements from a first instrument and a second instrument positioned within the vessel of the patient while the second instrument is moved longitudinally through the vessel from a first position to a second position, obtaining image data from an image of a vessel system, co-registering the physiologic measurements with the image data to produce co-registered physiologic measurements, and determining whether to perform a first surgical procedure or a second surgical procedure, wherein the determining is based on the co-registered physiologic measurements. Other associated methods, systems, and devices are also provided herein.