Abstract:
A method for customizing at least one parameter of a road marking function of a lighting system of a motor vehicle, the method including the following steps: driving the lighting system on the basis of an initial value of at least one parameter of a road marking function; displaying a graphical interface for controlling the parameter of the road marking function; upon reception of a command to modify the parameter, adjusting the driving of the road marking function in real time on the basis of the modification command.
Abstract:
The present invention relates to a motor vehicle driving aid system, the vehicle comprising a lighting device intended to illuminate a road scene at the front of the vehicle. The vehicle includes means for detecting an oncoming vehicle, control means receiving information from the detection means, and means for reducing dazzling of the driver of the motor vehicle caused by the light emitted by the oncoming vehicle. These means are controlled by the control means, and means for the management of the lighting device designed to increase the illumination of the lighting device of the vehicle and to avoid dazzling of the driver of the oncoming vehicle, these means being controlled by the control means.
Abstract:
The invention deals with a support for light source(s) for a light module, notably for a motor vehicle, comprising a substrate; at least one surface light source of the organic light-emitting diode type supported by the substrate, the at least one surface light source comprising, at one or more edges, at least two electrical contact zones; electrical tracks deposited on the substrate; and electrical contacts between the electrical contact zones of the light source or sources and the electrical tracks. The electrical contacts comprise elastic blades, in contact under pressure with the contact zone or zones of the surface light source or sources and with the electrical tracks on the substrate.
Abstract:
A device for assisting with driving an automotive vehicle, the vehicle being equipped with at least one illuminating device able to emit a beam for illuminating a road scene (SR) in front of the vehicle, the assisting device comprising a variable transmission screen that is intended to be placed between the road scene (SR) and a driver of the vehicle, the assisting device being configured to, when active, synchronously control a light emission of at least one light source of the illuminating device and a transmission coefficient of the variable transmission screen with a pulsed signal. The assisting device is configured so as to prevent antiphase and/or phase effects while and if a vehicle equipped with a device of the same type is approaching.
Abstract:
A differentiated viewing device, notably for a motor vehicle, comprising a light system configured to selectively emit first and second light signals, the device further comprises a first pair of active spectacles intended to be worn by a first observer, the first pair of spectacles being provided with a first screen capable of allowing the vision of the first observer in a first configuration and of blanking the vision of the first observer in a second configuration, the light system and the first pair of spectacles being synchronized so that the first screen is in the first configuration when the light system emits the first signals, and in the second configuration when the light system emits the second signals.
Abstract:
A pair of spectacles equipped with at least one lens and intended to be worn by a user, the spectacles comprising displaying means allowing the data to be projected into a field of view of the user, and an anti-glare screen provided with a variable transmission coefficient allowing the intensity of incident light intended to pass through the lens toward the user to be attenuated, the displaying means and the anti-glare screen being positioned so that some of the rays emitted by the displaying means, in order to display the data, strike the anti-glare screen, the spectacles being configured to adapt the transmission coefficient of the anti-glare screen depending on the intensity of the incident light, the displaying means furthermore being coupled to the anti-glare screen so that the displaying means display data when the anti-glare screen transmits the light.
Abstract:
A pair of spectacles equipped with at least one lens and intended to be worn by a user, the spectacles comprising displaying means allowing data to be projected into a field of view of the user, and an anti-glare screen provided with a variable transmission coefficient allowing the intensity of incident light intended to pass through the lens toward the user to be attenuated, the spectacles being configured to adapt the transmission coefficient of the anti-glare screen depending on the intensity of the incident light.
Abstract:
A device for assisting in the driving of a motor vehicle comprising a screen with variable transmission intended to be arranged between a road scene in front of the vehicle and a driver of the vehicle, the device comprising a number of sensors suitable for recovering data representative of the environment in which the vehicle is located, the device being configured to drive a transmission coefficient of the screen with variable transmission, wherein the device is configured to take into account the data recovered by the sensors and to compute the transmission coefficient by combining the data.
Abstract:
An adaptive optical filter for a spectacle lens, comprising at least two separate zones (10_M, 10_S), each being defined by an instantaneous value of at least one optical property. The optical property (CT) of at least one of the zones (10_M, 10_S) of the adaptive optical filter (10) is variable over time between a maximum value (CTMAX) and a minimum value (CTmin).
Abstract:
An organic light-emitting diode comprising a generally extensive first electrode; a generally extensive second electrode placed facing the first electrode, the second electrode comprising at least two portions that are electrically insulated from each other; at least one emissive organic layer placed between the first and second electrodes; and zones for electrically connecting the first and second electrodes. The zones for electrically connecting the first and second electrodes are located on at least one of the edges of the diode.