Abstract:
A clamp unit is adapted for controlling a clamp switch of a power supply such that the power supply outputs an output voltage in an ON mode when the clamp switch is in an ON-state and that the power supply does not output the output voltage in an OFF mode when the clamp switch is in an OFF-state. The clamp unit includes: a coupling circuit for outputting a coupling voltage in response to first and second reference voltages, and a control signal outputted by a control signal generating circuit in response to an input voltage; and a detecting circuit for outputting a clamp signal to the clamp switch in response to a first signal indicating whether the power is in the ON mode or the OFF mode, and a second signal indicating whether the power supply is to output the output voltage.
Abstract:
A chassis structure includes a chassis body and at least one holder module. The holder module includes a frame and a guiding assembly. The frame is located in the chassis body and has a first linking portion and a second linking portion. The guiding assembly is disposed on the chassis body and has a first guiding slot and a second guiding slot. The second guiding slot has a first segment and a second segment. The first guiding slot and the first segment extend along a straight direction, and the second segment extends along an arched direction. The first linking portion and the second linking portion are adapted to move along the first guiding slot and the first segment respectively at the same time such that the frame moves upward, and then the second linking portion is adapted to move along the second segment such that the frame rotates.
Abstract:
A clamp unit is adapted for controlling a clamp switch of a power supply such that the power supply outputs an output voltage in an ON mode when the clamp switch is in an ON-state and that the power supply does not output the output voltage in an OFF mode when the clamp switch is in an OFF-state. The clamp unit includes: a coupling circuit for outputting a coupling voltage in response to first and second reference voltages, and a control signal outputted by a control signal generating circuit in response to an input voltage; and a detecting circuit for outputting a clamp signal to the clamp switch in response to a first signal indicating whether the power is in the ON mode or the OFF mode, and a second signal indicating whether the power supply is to output the output voltage.
Abstract:
A rotary extending frame includes a frame, a handle, a plurality of friction pieces, and a plurality of positioning discs. The frame has a plurality of accommodation spaces and fastening portions. The handle is rotatably disposed on the frame and has a holding portion and a plurality of rotating portions connected to two ends of the holding portion and facing two side surfaces of the frame respectively. The friction pieces are disposed on the corresponding rotating portions respectively and are firmly attached on the two side surfaces. The positioning discs are disposed on the corresponding rotating portions respectively and are pivotally connected to the friction pieces. The friction pieces and the frame clamp the corresponding rotating portions, so that the rotating portions and the positioning discs are adapted to rotate relative to the friction pieces and the frame and rub against the corresponding friction pieces simultaneously.
Abstract:
A chassis structure includes a chassis body and at least one holder module. The holder module includes a frame and a guiding assembly. The frame is located in the chassis body and has a first linking portion and a second linking portion. The guiding assembly is disposed on the chassis body and has a first guiding slot and a second guiding slot. The second guiding slot has a first segment and a second segment. The first guiding slot and the first segment extend along a straight direction, and the second segment extends along an arched direction. The first linking portion and the second linking portion are adapted to move along the first guiding slot and the first segment respectively at the same time such that the frame moves upward, and then the second linking portion is adapted to move along the second segment such that the frame rotates.
Abstract:
A rotary extending frame includes a frame, a handle, a plurality of friction pieces, and a plurality of positioning discs. The frame has a plurality of accommodation spaces and fastening portions. The handle is rotatably disposed on the frame and has a holding portion and a plurality of rotating portions connected to two ends of the holding portion and facing two side surfaces of the frame respectively. The friction pieces are disposed on the corresponding rotating portions respectively and are firmly attached on the two side surfaces. The positioning discs are disposed on the corresponding rotating portions respectively and are pivotally connected to the friction pieces. The friction pieces and the frame clamp the corresponding rotating portions, so that the rotating portions and the positioning discs are adapted to rotate relative to the friction pieces and the frame and rub against the corresponding friction pieces simultaneously.
Abstract:
Disclosed is an electrical power supply apparatus, comprising a switch circuit, an output circuit, single-direction pass circuit and a control circuit. The output circuit is used for outputting a supply of main power source. The standby circuit is used for providing a supply of standby power source. The control circuit is for being capable of controlling the switch circuit according to a state of the external power source, wherein when the external power source is on, the switch circuit is in a cutoff state for allowing a first period or a second period of a power signal of the external power source transferred to the standby circuit through the single-direction pass circuit.