Abstract:
A manufacturing method of a substrate structure including the following steps is provided. A chemical surface treatment is performed on a metal base such that a passivation layer is formed on a surface of the metal base. The metal base is assembled to a substrate. A metal pattern is formed on the substrate, wherein the metal pattern is separated from the metal base. A substrate structure and a metal component are also provided.
Abstract:
A method of forming a metallic pattern on a polymer substrate is provided. A mixture layer is formed on a polymer substrate surface. The mixture layer includes an active carrier medium and nanoparticles dispersed in the active carrier medium. A laser process is performed to treat a portion of the mixture layer to form a conductive pattern on the surface of the polymer substrate. A cleaning process is performed to remove an untreated portion of the mixture layer to expose the surface of the polymer substrate, while the conductive pattern is remained on the surface of the polymer substrate. Then, the conductive pattern on the polymer substrate is subjected to an electroplating process to form the metallic pattern over the conductive pattern on the polymer substrate.
Abstract:
A method for forming a metal pattern on a substrate having at least one metal component is provided. By performing the surface passivation treatment on the at least metal component, the surface of the at least metal component becomes an anti-plating surface via an anti-plating coating. Hence, the metal pattern can be selectively formed in the following electroless plating processes.
Abstract:
A method of forming a metallic pattern on a polymer substrate is provided. A mixture layer is formed on a polymer substrate surface. The mixture layer includes an active carrier medium and nanoparticles dispersed in the active carrier medium. A laser process is performed to treat a portion of the mixture layer to form active seed residues on the surface of the polymer substrate. A cleaning process is performed to remove an untreated portion of the mixture layer to expose the surface of the polymer substrate, while the active seed residues are remained on the surface of the polymer substrate. Then, the active seed residues on the polymer substrate are subjected to an electroless plating process to form the metallic pattern over the active seed residues on the polymer substrate.
Abstract:
An electronic device is provided. The electronic device includes a heat source, a heat-conductive member and a heat-dissipating sheet. The heat-conductive member includes a recess, wherein the recess is thermally connected to the heat source. The heat-dissipating sheet is attached to the heat-conductive member, wherein the heat-dissipating sheet covers the recess.
Abstract:
The present disclosure is directed to a method of fabricating a substrate structure and a substrate structure fabricated by the same method. The method would include forming a first metal layer directly on a base, forming a first protective layer directly on the first metal layer, forming a second protective layer by using a compound comprising a thiol group directly on the first protective layer, patterning the second protective layer to form a pattern having an opening exposing the first protective layer, and forming a second metal layer within the opening of the second protective layer and directly on the first protective layer. The substrate structure would include a base, a first metal layer, a first protective layer, a second protective layer, and a second metal layer.
Abstract:
A metal pattern formed in the electromagnetic absorber structure is provided. By performing the laser treatment to form the active layer thereon, the metal pattern can be regionally formed on the electromagnetic absorber structure in the following electroless plating processes.
Abstract:
The present disclosure is directed to a method of fabricating a substrate structure and a substrate structure fabricated by the same method. The method would include forming a first metal layer directly on a base, forming a first protective layer directly on the first metal layer, forming a second protective layer by using a compound comprising a thiol group directly on the first protective layer, patterning the second protective layer to form a pattern having an opening exposing the first protective layer, and forming a second metal layer within the opening of the second protective layer and directly on the first protective layer. The substrate structure would include a base, a first metal layer, a first protective layer, a second protective layer, and a second metal layer.
Abstract:
A manufacturing method of a substrate structure including the following steps is provided. A chemical surface treatment is performed on a metal base such that a passivation layer is formed on a surface of the metal base. The metal base is assembled to a substrate. A metal pattern is formed on the substrate, wherein the metal pattern is separated from the metal base. A substrate structure and a metal component are also provided.
Abstract:
A method for forming a patterned conductive structure is provided. The method includes forming a soluble layer on a surface of a substrate, wherein the soluble layer has an opening exposing a rough portion of the surface. A first conductive layer is formed on the soluble layer, wherein the first conductive layer extends onto the rough portion in the opening. The soluble layer and the first conductive layer on the soluble layer are removed, wherein a portion of the first conductive layer corresponding to the rough portion is remained on the substrate. A patterned conductive structure formed by the method is also provided.