Abstract:
A method for controlling an antenna array is provided, which includes following steps. Associations with a plurality of mobile devices are established, and at least one characteristic parameter table corresponding to the mobile devices is generated. When a plurality of transmission request signals are received simultaneously and the mobile devices are divided into a user group, a multi-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and a plurality of data streams corresponding to the mobile devices are transmitted simultaneously through the antenna array. When the transmission request signals are received simultaneously and the mobile devices are not divided into the user group, a single-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and the data streams corresponding to the mobile devices are transmitted one-by-one through the antenna array.
Abstract:
A method for controlling an antenna array is provided, which includes following steps. Associations with a plurality of mobile devices are established, and at least one characteristic parameter table corresponding to the mobile devices is generated. When a plurality of transmission request signals are received simultaneously and the mobile devices are divided into a user group, a multi-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and a plurality of data streams corresponding to the mobile devices are transmitted simultaneously through the antenna array. When the transmission request signals are received simultaneously and the mobile devices are not divided into the user group, a single-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and the data streams corresponding to the mobile devices are transmitted one-by-one through the antenna array.
Abstract:
The present invention discloses a network-transmission inspection method, applied to a network-transmission inspection device, including: connecting a network-connection module with a base station through a network by a network-communication device; checking whether the number of RX packets received by the network-connection module from the base station has increased at a first predetermined time interval when the network-connection module is connected with the base station; checking whether the number of TX packets transmitted by the network-connection module to the base station has increased when the number of RX packets has not increased; checking whether the connection between the network-connection module and the network-communication device is functioning properly when the number of TX packets has not increased; and increasing the network abnormal number by 1 when the connection is not functioning properly.
Abstract:
A communication device includes a smart antenna, a storage device, and a processor. The smart antenna is capable of switching between a plurality of antenna modes. In each of the antenna modes during a training stage, the smart antenna receives a first feedback datum, and the processor calculates a reward indicator according to the first feedback datum. The processor compares all of the reward indicators with each other and controls the smart antenna to select a specific mode of the antenna modes according to a comparison between all of the reward indicators. In the specific mode, the smart antenna receives a second feedback datum, the processor determines the weight function of the first feedback datum and the second feedback datum of the specific mode, and the processor updates the reward indicator of the specific mode according to the weight function.
Abstract:
A wireless communication device for linking to an electronic device and including at least one antenna array and a control circuit is provided. The control circuit groups the at least one antenna array to obtain a plurality of test groups. In a scanning operation, the control circuit selects one of the test groups to be a specific test group. In a setting operation, the control circuit groups the specific test group, and re-obtains the plurality of test groups according to the grouped specific test group. The control circuit searches at least one optimal antenna for linking to the electronic device from the at least one antenna array through the scanning operation and the setting operation.
Abstract:
A wireless communication device for linking to an electronic device and including at least one antenna array and a control circuit is provided. The control circuit groups the at least one antenna array to obtain a plurality of test groups. In a scanning operation, the control circuit selects one of the test groups to be a specific test group. In a setting operation, the control circuit groups the specific test group, and re-obtains the plurality of test groups according to the grouped specific test group. The control circuit searches at least one optimal antenna for linking to the electronic device from the at least one antenna array through the scanning operation and the setting operation.