Guide placement by a robotic device

    公开(公告)号:US10967501B1

    公开(公告)日:2021-04-06

    申请号:US16182733

    申请日:2018-11-07

    Abstract: Example implementations may relate to providing a dynamic jig in a three-dimensional (3D) coordinate system. Specifically, a control system may (i) receive task data specifying a manipulation of one or more parts at a specified location; (ii) determine: (a) one or more work surfaces and (b) a first position of each of the one or more work surfaces, such that the one or more work surfaces collectively provide a jig to facilitate the specified manipulation of the parts; (iii) a plurality of guide end effectors that are positionable by one or more robotic devices such that the end effectors provide the work surfaces at the respectively determined first positions; and (iv) operate the one or more robotic devices to position the guide end effectors to provide the one or more work surfaces at the respectively determined first positions, thereby forming the jig from the one or more work surfaces.

    Continuous pull three-dimensional printing

    公开(公告)号:US10399272B2

    公开(公告)日:2019-09-03

    申请号:US15513927

    申请日:2015-08-26

    Abstract: Described herein are three-dimensional (3D) printer systems and methods, which may provide for “continuous pull” 3D printing. An illustrative 3D printer includes: a resin container, a base plate, a light source arranged below the resin container and operable to cure resin in the resin container; and a control system operable to: (a) receive model data specifying a 3D structure; (b) determine 2D images corresponding to layers of the 3D object; and (c) generate control signals to operate the light source and the base plate to sequentially form the layers of the 3D object onto the base plate, wherein the base plate moves a formed portion of the 3D object upward after formation of each layer, and wherein at least a surface of a formed portion of the 3D object remains in contact with the resin in the resin container throughout the formation of the layers of the 3D object.

    Interactive object fabrication
    3.
    发明授权

    公开(公告)号:US10155273B1

    公开(公告)日:2018-12-18

    申请号:US15159549

    申请日:2016-05-19

    Abstract: Example implementations may relate to interactive object fabrication. In particular, a control system may receive model data defining a 3D shape of a physical object that is fabricable out of a substrate at a work site. The system may then direct a projection system to emit onto the substrate a projection illustrative of the 3D shape defined by the model data. Also, the system may transmit, to a robotic system, fabrication instructions that direct the robotic system to fabricate the physical object in accordance with the model data. subsequently, during fabrication of the physical object, the system may (i) receive progress data indicative of a portion of the physical object that has been fabricated from the substrate, and (ii) direct the projection system to update the projection of the 3D shape to remove a portion of the projection corresponding to the portion of the physical object that has been fabricated.

    Voxel 3D printer
    4.
    发明授权

    公开(公告)号:US09840045B2

    公开(公告)日:2017-12-12

    申请号:US14588039

    申请日:2014-12-31

    Abstract: An example system includes: (i) a resin container defining a cavity; (ii) a plurality of rods extending from an inner base surface of the resin container and into the cavity; (iii) a plurality of light sources arranged to emit radiation into the plurality of rods, such that when the cavity contains liquid resin, radiation passing through a given one of the rods cures liquid resin that surrounds the given rod; and (iv) a control system configured to: (a) receive data specifying a three-dimensional structure; (b) determine a shape for a layer of a plurality of layers that collectively form the three-dimensional structure; and (c) determine one or more of the light sources that correspond to the shape of the layer; and (d) form the layer by operating the one or more determined light sources that correspond to the shape of the layer.

    Continuous pull three-dimensional printing

    公开(公告)号:US10987869B2

    公开(公告)日:2021-04-27

    申请号:US16458628

    申请日:2019-07-01

    Abstract: Described herein are three-dimensional (3D) printer systems and methods, which may provide for “continuous pull” 3D printing. An illustrative 3D printer includes: a resin container, a base plate, a light source arranged below the resin container and operable to cure resin in the resin container; and a control system operable to: (a) receive model data specifying a 3D structure; (b) determine 2D images corresponding to layers of the 3D object; and (c) generate control signals to operate the light source and the base plate to sequentially form the layers of the 3D object onto the base plate, wherein the base plate moves a formed portion of the 3D object upward after formation of each layer, and wherein at least a surface of a formed portion of the 3D object remains in contact with the resin in the resin container throughout the formation of the layers of the 3D object.

    Customized robotic installation based on measurements collected on site

    公开(公告)号:US10882181B2

    公开(公告)日:2021-01-05

    申请号:US16251175

    申请日:2019-01-18

    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.

    Fabrication baseplate with anchor channels

    公开(公告)号:US10286602B1

    公开(公告)日:2019-05-14

    申请号:US16139216

    申请日:2018-09-24

    Abstract: An example fabrication system includes a light source, a resin container, and a base plate on which resin is cured using the light source so as to build up an object one layer at a time. The disclosed base plate includes a build surface and an anchor channel that extends into the base plate from the build surface. The anchor channel is a recess in the base plate configured to have a narrow width that is closer to an opening to the build surface than a broad width. The base plate can also have a light source that emits light into the anchor channel to cure resin within the anchor channel. Resin anchors cured within the anchor channel to conform to the anchor channel resist being extracted, and an object formed on the build surface remains anchored during fabrication via adhesion to the resin anchors.

    Customized robotic installation based on measurements collected on site

    公开(公告)号:US10220511B2

    公开(公告)日:2019-03-05

    申请号:US15222583

    申请日:2016-07-28

    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.

Patent Agency Ranking