Method of forming a structure upon a substrate

    公开(公告)号:US11490526B2

    公开(公告)日:2022-11-01

    申请号:US17265382

    申请日:2019-08-01

    Applicant: XTPL S.A.

    Abstract: A method of forming a structure upon a substrate is disclosed. The method comprises: providing a substrate upon a surface of which a plurality of electrically conductive pads are disposed; depositing fluid containing a dispersion of electrically polarizable nanoparticles onto the substrate such that at least a portion of a first one of the plurality of pads is in contact with the fluid; applying an alternating electric field to the fluid using a first electrode and a second electrode, the first electrode being positioned so as to provide an effective first electrode end position from which the electric field is applied, coincident with the deposited fluid, and spaced apart from the first pad by a distance, and the second electrode being in contact with the first pad, such that a plurality of the nanoparticles are assembled to form a first elongate structure extending along at least part of the distance between the effective first electrode end position and the portion of the first pad.

    Method of printing fluid
    2.
    发明授权

    公开(公告)号:US11673406B2

    公开(公告)日:2023-06-13

    申请号:US17425638

    申请日:2019-03-20

    Applicant: XTPL S.A.

    CPC classification number: B41J2/17596

    Abstract: Method of printing fluid on a printable surface of a substrate. A print head ejects fluid in a continuous stream. The print head that includes a micro-structural fluid ejector, which consists of output, elongate input, and tapering portions between the output and the elongate input portions. The output consists of an exit orifice of an inner diameter ranging between 0.1 μm and 5 μm and an end face having a surface roughness of less than 0.1 μm. The print head is positioned above the substrate with the output of the micro-structural fluid ejector pointing downward. During printing, the print head positioning system maintains a vertical distance between the end face and the printable surface of the substrate within a range of 0 μm to 5 μm, and the pneumatic system applies pressure to the fluid in the micro-structural fluid ejector in the range of −50,000 Pa to 1,000,000 Pa.

    Fluid printing apparatus
    3.
    发明授权

    公开(公告)号:US11673409B2

    公开(公告)日:2023-06-13

    申请号:US17425610

    申请日:2019-03-20

    Applicant: XTPL S.A.

    CPC classification number: B41J3/28 B41J2/04505 B41J2/17596

    Abstract: Fluid printing apparatus including substrate, print head, pneumatic system, and print head positioning system. The print head ejects fluid in a continuous stream with a micro-structural fluid ejector consisting of output, elongate input, and tapering portions between the output and elongate input portions. The output portion consists of an exit orifice of an inner diameter ranging between 0.1 μm and 5 μm and an end face having a surface roughness of less than 0.1 μm. The print head is positioned above the substrate with the output portion of the micro-structural fluid ejector pointing downward. During printing, the print head positioning system maintains a vertical distance between the end face and the printable surface of the substrate within a range of 0 μm to 5 μm, and the pneumatic system applies pressure to the fluid in the micro-structural fluid ejector in the range of −50,000 Pa to 1,000,000 Pa.

    Method for repairing conductor tracks

    公开(公告)号:US11419219B2

    公开(公告)日:2022-08-16

    申请号:US16972094

    申请日:2019-06-05

    Applicant: XTPL S.A.

    Abstract: A method for modifying an elongate structure including providing a fluid deposited onto the substrate, the fluid containing a dispersion of electrically polarizable nanoparticles and applying an AC voltage across a portion of the elongate structure so as to cause an alternating electric current to pass through the narrow section such that a break in the elongate structure is formed at the narrow section, the break being defined between a first broken end and a second broken end of the elongate structure, and then cause, when the break is formed, an alternating electric field to be applied to the fluid such that a plurality of the nanoparticles contained in the fluid are assembled to form a continuation of the elongate structure extending from the first broken end towards the second broken end so as to join the first and second broken ends.

Patent Agency Ranking