Abstract:
The present invention relates to a mixed multi-spectrum light-sensing pixel group, a light-sensing device, and a light-sensing system. The mixed multi-spectrum light-sensing pixel group includes at least one chemical coating light-sensing pixel and at least one semiconductor light-sensing pixel. In the present invention, the chemical coating light-sensing pixel and the semiconductor light-sensing pixel are combined to generate a mixed multi-spectrum light-sensing pixel, numerous color signals and other spectral signals may be simultaneously obtained, energy of incident photons can be maximally utilized, and the theoretical upper limit of photoelectric conversion efficiency is achieved or approximately achieved; colors may be completely reconstructed, and meanwhile images of other spectrums including an ultraviolet image, a near-infrared image, and a far-infrared image are obtained.
Abstract:
A sensing method and system for Fresnel lenses are disclosed, the system including a first Fresnel lens unit for sensing the signal of a target object crossing a first boundary of a sensing area, a second Fresnel lens unit for sensing the signal of a target object crossing a second boundary of the sensing area, a third Fresnel lens unit for sensing the signal of a target object crossing a third boundary of the sensing area, and a sensing unit for receiving and processing the sensed signals of the Fresnel lens units. The first and second Fresnel lens units are arranged on two sides of the third Fresnel lens unit. Furthermore, it is possible to add more Fresnel lens units above, below or around the Fresnel lens units. By monitoring the boundaries of the sensing area, the sensing method and system for the Fresnel lenses improve the insufficiency of the sensing area, reduce cost and save power consumption.
Abstract:
A multi-spectrum photosensitive device comprises two, three, or four composite sensing pixels arranged in layers up and down in a base layer of P-type or N-type silicon by means of single-sided processing or double-sided processing, each composite sensing pixels can sense respectively spectrum orthogonal or complementary to each other in visible light or visible and infrared light. The basic sensing pixels on different layers of the composite sensing pixels can be designed to sense different colors or spectrums, so that a multi-spectrum photosensitive chip can be achieved by repeatedly arranging the macro units consisting of more than one composite sensing pixel. The present disclosure also includes a new multi-layer sensing pixel, and examples of which used in a single-sided double-layer, or a double-sided double-layer, or a double-sided three-layer, or a double-sided four-layer, or a single-sided mixed double-layer, or a double-sided mixed with double-layer or a multi-layer multi-spectrum sensing device. A multi-spectrum photosensitive device according to the present disclosure has the advantage of better color sensing performance, integration of color sensing and infrared sensing, and a simple processing technique.
Abstract:
The present invention relates to a multi-depth-of-field light-sensing device, a system, a depth of field extension method, and an optical imaging system. The multi-depth-of-field light-sensing device includes at least two light-sensing pixel layers capable of inducing a light source, where the at least two light-sensing pixel layers are arranged at an interval of a preset distance, so that different light signals from a lens at a specific distance from the light-sensing device are focused to the different light-sensing pixel layers. The multi-depth-of-field light-sensing device of the present invention can implement automatic focusing without using any electrically operated mechanism or complex and precise mechanical component, and have good depth of field extension performance.
Abstract:
A multi-spectrum sensing device comprises a top layer and a bottom layer. The top layer comprises sensing pixels for sensing a first group of colors. The bottom layer comprises sensing pixels for sensing a second group of colors. At least one of the layers comprises sensing pixels having at least two or more than two spectra.
Abstract:
A magnet primarily for use in MRI applications comprises a pair of poles oriented about a plane of symmetry parallel to each therebetween defining an air gap region, magnetic field sources secured on the surfaces of the poles opposite the air gap that have yokes disposed on them, the yokes connected to each other by returns so that the entire magnet assembly can form a closed magnetic flux circuit to substantially confine the magnetic fields generated by the apparatus in the air gap where an imaging region is formed to place subjects for the purposes of examination. The main assembly being cylindrical in geometry has permanent magnets for magnetic field sources that are composed of two regions, a central disk-like portion magnetized substantially along the axial direction and an outer ring-like region magnetized substantially along the radial direction extending axially to form part of the pole together producing a very efficient and even flux distribution throughout the entire magnet assembly with minimal flux leakage. A further means of reducing flux leakage is incorporated in the yokes which have two sections, a disk-like region and an ring-like section to enclose the permanent magnets. The poles are made of multiple sections with a central disk-like region and an outer ring-like region that is a combination of permanent magnets and high permeability materials. This magnet assembly can achieve 1.0 Tesla or greater magnetic fields for whole-body scanning without saturating the magnet pole and other structures.
Abstract:
A balance for a simultaneous differential thermal analysis instrument that combines gravimetric measurements with measurements that require propagation of electrical signals from the sample holder to an apparatus for recording the electrical signals. In one embodiment of the invention, conductive flat planar strip flexure pivots are used in a single-meter movement balance to mechanically and electrically couple the components of the balance mechanism to the apparatus that records the electrical signals.
Abstract:
A system for performing a less invasive surgical procedure and, in particular, devices and methods for spinal fixation. The system comprises dilation tool(s), at least one working/insertion cannula, a plurality of screws, at least one fixation rod for connecting the screws, and a rod inserter. The dilation tool(s) may be used to dilate an incision made in a patient to form an opening. Thereafter, a drill may be used to form holes in the vertebrae. An insertion cannula may be attached to a screw and inserted into the opening. The screws may be polyaxial screws and may be inserted into the vertebrae using a screwdriver. An operator may then move the insertion cannula to manipulate a head portions of the screws such that the head portions may be aligned to receive a fixation rod. A rod inserter may be used to insert a fixation rod into the head portions. After the fixation rod is in place, it may be locked to the screws, thereby fixing the system in place on the spine.
Abstract:
A control system and method for a disk drive comprising first and second actuator arms. The control system comprises first and second stages and a reset system. The first stage displaces the first arm. The second stage displaces the second arm relative to the first arm. The second stage defines a displacement offset when the disk drive begins a seek operation. The reset system discharges at least a portion of the displacement offset over time.
Abstract:
A system for performing a less invasive surgical procedure and, in particular, devices and methods for spinal fixation. The system comprises dilation tool(s), at least one working/insertion cannula, a plurality of screws, at least one fixation rod for connecting the screws, and a rod inserter. The dilation tool(s) may be used to dilate an incision made in a patient to form an opening. Thereafter, a drill may be used to form holes in the vertebrae. An insertion cannula may be attached to a screw and inserted into the opening. The screws may be polyaxial screws and may be inserted into the vertebrae using a screwdriver. An operator may then move the insertion cannula to manipulate a head portions of the screws such that the head portions may be aligned to receive a fixation rod. A rod inserter may be used to insert a fixation rod into the head portions. After the fixation rod is in place, it may be locked to the screws, thereby fixing the system in place on the spine.