Abstract:
A thin film transistor (TFT) includes a gate, a drain, a source, an insulating layer, a metal oxide layer, and an etch stopper layer. The metal oxide layer includes a source area, a drain area, and a channel area. The source is electrically coupled to the source area and the drain is electrically coupled to the drain area. Oxygen ions are implanted into the channel area via a surface treatment process to make an oxygen concentration of the channel area be greater than an oxygen concentration of each of the source area and the drain area.
Abstract:
A display panel manufacturing method includes forming a gate electrode on a substrate and a gate insulator, a semiconductor layer, and an etch stop layer covering the gate electrode. A photoresist layer covering on the etch stop layer is pattern from two opposite side of the substrate by two photolithography processes to form a photoresist pattern. The etch stop layer is dry etched to form an etch stop pattern via the photoresist pattern. The photoresist pattern is formed again by two photolithography processes. The semiconductor layer is wet etched to form a semiconductor pattern via the photoresist pattern. A source electrode and a drain electrode is formed corresponding to two opposite sides of the gate electrode to orderly cover the etch pattern, the semiconductor pattern, and the gate insulator.
Abstract:
An array substrate for a liquid crystal display device includes a first storage capacitor and a second storage capacitor for increased capacitance. The first storage capacitor is formed by a first common electrode and a pixel electrode. The second storage capacitor is formed by a second common electrode and the pixel electrode.
Abstract:
A method of manufacturing a thin film transistor substrate is provided, including a first photoresist pattern covers a channel during a process of etching a second photoresist pattern and protects the channel. Thus, an etching stop layer is not required.
Abstract:
A manufacturing method of display array substrate is provided. The method includes depositing a first metal layer on a substrate and defining a peripheral area and a display area, coating a photo-resist layer on the first metal layer located in the peripheral area, anodizing the first metal layer to a first metal oxide layer with the photo-resist layer as a mask, patterning the first metal oxide layer located in the display area to a gate insulator, removing the photo-resist layer to expose the first metal layer in the peripheral area, forming a channel layer on the gate insulator, and depositing a second metal layer and patterning the second metal layer located in the display area to form a source electrode and a drain electrode.
Abstract:
A method for forming a TFT includes providing a substrate, a gate electrode on the substrate, an electrically insulating layer on the substrate to totally cover the gate electrode, a channel layer on the electrically insulating layer, a first photoresist pattern on the channel layer, a metal layer on the electrically insulating layer, the channel layer and the first photoresist layer, and a second photoresist pattern on the metal layer. A middle portion of the metal layer is then removed to form a source electrode and a drain electrode and to expose the first photoresist pattern and a portion of the channel layer between the first and second photoresist patterns. The exposed portion of the channel layer is then processed to have its electrical conductivity be lowered to thereby reduce a hot-carrier effect of the channel layer.