Abstract:
A power converter is disclosed. The power converter includes a comparator and a timing generator. The comparator compares a first input signal with a second input signal to provide a control signal. The timing generator is coupled to the comparator. The timing generator includes a plurality of timing generating units, a logic unit, and a calculation unit. The timing generator generates a plurality of timing signals through the timing generating units and the logic unit according to the control signal, and the calculation unit forms a pulse width modulation (PWM) signal according to the timing signals. At least a part of the timing signals are overlapped.
Abstract:
A power converter is disclosed. The power converter includes a comparator and a timing generator. The comparator compares a first input signal with a second input signal to provide a control signal. The timing generator is coupled to the comparator. The timing generator includes a plurality of timing generating units, a logic unit, and a calculation unit. The timing generator generates a plurality of timing signals through the timing generating units and the logic unit according to the control signal, and the calculation unit forms a pulse width modulation (PWM) signal according to the timing signals. At least a part of the timing signals are overlapped.
Abstract:
The disclosure provides a power conversion circuit with a multi-function pin and a multi-function setting method thereof. The multi-function pin is coupled to an external setting circuit. The power conversion circuit includes a first function circuit, a second function circuit, and a judging circuit. The first function circuit is coupled to the multi-function pin. The second function circuit is coupled to the multi-function pin. The judging circuit is coupled to the multi-function pin, the first function circuit, and the second function circuit. The judging circuit provides a setting current to the multi-function pin, so that the external setting circuit generates a voltage according to the setting current. The judging circuit judges the type of external setting circuit according to voltage so as to activate the first function circuit or the second function circuit accordingly. The disclosure also provides a multi-function setting method in which the power conversion circuit automatically activates the corresponding function according to the type of external setting circuit.
Abstract:
A power conversion circuit includes an error amplifying circuit, a first comparison circuit, a second comparison circuit and a control circuit. The error amplifying circuit provides an output signal. The first comparison circuit, coupled to the error amplifying circuit, receives the output signal and a ramp signal to generate a first comparison signal. The second comparison circuit receives an output voltage and a first reference voltage and provides a second comparison signal. The control circuit, coupled to the error amplifying circuit, the first comparison circuit and the second comparison circuit, provides a control signal to control the error amplifying circuit according to the first comparison signal, the second comparison signal and an enabling signal. In a first operation mode of error amplifying circuit, the output signal is an error amplifying signal. In a second operation mode of error amplifying circuit, the output signal is a second reference voltage.
Abstract:
A DC-DC converting controller coupled to an output stage and an external resistor network and providing a pulse-width-modulation (PWM) signal to control the output stage to provide an output voltage is disclosed. The DC-DC converting controller includes a sensing circuit, a droop current circuit, a first pin and a PWM signal control loop. The sensing circuit, coupled to the output stage, provides a sensing current. The droop current circuit, coupled to the sensing circuit, provides a droop current according to the sensing current. The first pin, coupled to the droop current circuit and external resistor network, provides the droop current to make the external resistor network provide a second reference voltage. The PWM signal control loop, coupled to the external resistor network, generates a PWM signal according to the output voltage and the second reference voltage. The droop current is reduced to a default value with a default time.
Abstract:
A DC-to-DC controller and a control method thereof are provided. The DC-to-DC controller couples to an output stage, and the output stage provides an output voltage and includes an upper bridge switch and a lower bridge switch. The DC-to-DC controller includes a time signal generating unit and a time signal control circuit. The time signal control circuit couples to the time signal generating unit and receives a preset voltage and the output voltage. During a soft start period, if the output voltage is lower than the preset voltage, after the upper bridge switch is turned off and before the upper bridge switch is turned on again, the time signal control circuit turns off the upper bridge switch and the lower bridge switch for a first preset time and turns on the lower bridge switch for a second preset time.
Abstract:
A method with function parameter setting and an integrated circuit using the same are provided. The integrated circuit includes a function pin coupled to an external setting unit, a switch unit, and first and second function adjustment circuits. The first function adjustment circuit includes first and second current sources. The second function adjustment circuit detects a percentage of a divided voltage at the function pin, to provide a reference value and to set a second function parameter. The first function adjustment circuit uses the first current source to detect a first voltage detecting value at the function pin, and compares the first voltage detecting value with a default value. The switch unit switches the first and second current sources according to a compare result. The present invention adopts an integrated circuit for switching a plurality of current sources and detections, and may determine more resistance value setting intervals.
Abstract:
A control circuit of a power converter includes a first sensing circuit, a reference voltage generation circuit, an error amplifying circuit and a PWM circuit. The first sensing circuit, coupled to a first output circuit, provides a first current sensing signal. The reference voltage generation circuit, coupled to the first sensing circuit, provides a reference voltage according to the first current sensing signal. The error amplifying circuit, coupled to the reference voltage generation circuit, receives the reference voltage and an output feedback voltage of the power converter to provide an error amplifying signal. The PWM circuit, coupled between the error amplifying circuit and the first output circuit, receives the error amplifying signal and provides a control signal to control the first output circuit. The reference voltage generation circuit further receives the error amplifying signal and adjusts the reference voltage it generates according to the error amplifying signal.
Abstract:
A control circuit of a power converter is coupled to an output stage and controls it to convert an input voltage into an output voltage and generate an output current. The control circuit includes a ripple generation circuit, a synthesis circuit, an error amplifier, a comparator and a PWM circuit. The ripple generation circuit generates a ripple signal according to an input voltage, an output voltage and output current. The synthesis circuit receives the ripple signal and a first feedback signal related to output voltage to provide a second feedback signal. The error amplifier receives the second feedback signal and a reference voltage to generate an error signal. The comparator receives a ramp signal and error signal to generate a comparison signal. The PWM circuit generates a PWM signal to control output stage according to the comparison signal. A slope of ripple signal is changed with the output current.
Abstract:
A plus width modulation (PWM) signal generator is disclosed. The PWM signal generator includes a first signal generator providing a first signal, an output terminal, a first voltage generating circuit including connected to the first voltage generating circuit for providing a first present voltage according to the first signal, and a second voltage generating circuit connected to the first signal generator for providing a second present voltage according to the first signal. The first present voltage is earlier supplied to the output terminal than the second preset voltage, and after the first preset voltage continuously is provided for a period of preset time, the first voltage generating circuit stops providing the first preset voltage.