Abstract:
A method of fabricating metal interconnects and an inter-metal dielectric layer thereof. A first metal interconnect pattern and a second metal interconnect pattern disposed thereon are formed on a substrate by plating processes. Subsequently, an inter-metal dielectric layer is formed on the substrate, the first metal interconnect pattern and the second metal interconnect pattern. The inter-metal dielectric layer is then planarized and the second metal interconnect pattern is exposed.
Abstract:
The present invention provides a method of fabricating a hinge. First, a wafer is provided, and a hinge region and at least two through regions are defined on the wafer. The wafer in the hinge region is partially removed from a bottom surface of the wafer. Subsequently, the wafer in the through regions is completely removed from a top surface of the wafer, and the hinge is formed. Thereafter, a wafer level test is performed on the hinge of the wafer. Next, an etching process is performed to adjust the shape of the hinge. According to the method of the present invention, the thickness of the hinge is no longer limited by the thickness of the wafer, and the hinge can accept the wafer level test.
Abstract:
A method of manufacturing a suspension structure including providing a substrate, forming a first photoresist pattern on the substrate, heating the first photoresist pattern to harden it as a sacrificial layer, forming a second photoresist pattern on the substrate and the sacrificial layer, the second photoresist pattern exposing a part of the substrate and the sacrificial layer, forming a structure layer on the substrate, the second photoresist pattern, and the sacrificial layer, performing a lift off process to remove the second photoresist pattern and the structure layer above the second photoresist pattern, and performing a dry etching process to remove the sacrificial layer in order to make the structure layer become the suspension structure.
Abstract:
A method of edge bevel rinse. First, a wafer having a coating material layer disposed thereon is provided. A light beam is optically projected on the wafer to form a reference pattern. The reference pattern defines a central region, and a bevel region surrounding the central region on the surface of the wafer. Subsequently, the coating material layer positioned in the bevel region is removed according to the reference pattern.
Abstract:
First, a device wafer having a substrate layer and a device layer is provided. Then, a first mask pattern is utilized to remove the device layer uncovered by the first mask pattern. Subsequently, a medium layer is formed on the surface of the device wafer, and the medium layer is then bonded to a carrier wafer. Thereafter, a second mask pattern is utilized to remove the substrate layer uncovered by the second mask pattern. Finally, the medium layer is separated from the carrier wafer, the substrate layer is bonded to an extendable film, and the medium layer is then removed.
Abstract:
A substrate is provided. The substrate includes a plurality of devices disposed in the substrate, a plurality of contact pads disposed on a surface of the substrate and electrically connected to the devices, and a surface dielectric layer positioned on the surface of the substrate. Thereafter, a surface treatment process including at least a plasma etching process is performed. Subsequently, at least a plasma enhanced chemical vapor deposition (PECVD) process is performed to form a dielectric layer on a surface dielectric layer. The PECVD process is performed in a high frequency/low frequency alternating manner. Following that, a masking pattern on the dielectric layer is formed, and an anisotropic etching process is carried out to form a plurality of openings corresponding to the contact pads in the dielectric layer. The openings expose the contact pads, and each opening has an outwardly-inclined sidewall.
Abstract:
A wafer, having at least a spindle region and at least two through regions alongside the spindle region, is provided. The wafer in the spindle region is partially removed from the bottom surface. Thereafter, the bottom surface is bonded to a carrier with a bonding layer, and the wafer in the through regions is completely removed from the top surface.
Abstract:
A method of etching cavities having different aspect ratios. An etching stop layer is formed on the bottom surface of a substrate, and a mask pattern is formed on the top surface of the substrate. The mask pattern includes a plurality of sacrificial patterns positioned on both a first cavity predetermined region and a second cavity predetermined region. Then, an etching process is performed to remove the substrate not covered by the mask layer. Then, the etching stop layer is removed, as well as the sacrificial patterns and the substrate covered by the sacrificial patterns.
Abstract:
A method of performing a double-sided process is provided. First, a wafer having a structural pattern disposed on the front surface is provided. Following that, a plurality of front scribe lines are defined on the structural pattern, and a filling layer is filled into the front scribe lines. Subsequently, the structural pattern is bonded to a carrier wafer with a bonding layer, and a plurality of back scribe lines are defined on the back surface of the wafer. Finally, the filling layer filled in the front scribe lines is removed.
Abstract:
A wafer carrier for carrying a wafer includes a transparent base and a conducting layer. The transparent base has dimensions similar to that of the wafer, and bonds the wafer with a bonding layer. The conducting layer is transparent, and can be attracted by an electrostatic chuck so that the electrostatic chuck can deliver the wafer.