Abstract:
Systems, methods, and devices of the various embodiments may enable the detection and localization of power line corona discharges and/or electrical arcs by an unmanned aerial vehicle (UAV) including an ultraviolet (UV) sensor and a reflective parabolic dish. In various embodiments, the UV sensor may use the photoelectric effect to sense narrow-band UV photons in a Geiger-Mueller tube and circuit configuration. In various embodiments, the reflective parabolic dish may be fixed relative to the UV sensor and include a reflective concave surface. The reflective concave surface may be configured to reflect narrow-band UV photons toward the UV sensor.
Abstract:
A detector probe, for detecting ionizing radiation and which is suitable for use in a nucleonic instrument usable in locations having a high ambient temperature, includes an array of radiation detectors mounted on a support and a heat pipe for cooling the detector probe. The nucleonic instrument incorporating such a detector probe is also described.
Abstract:
A detector plate includes a carrier plate, especially an injection-molded carrier plate, having a plurality of detector elements for detecting ionizing radiation. The detector elements function according to the principle of a Geiger-Müller counter. To simplify the production process and to save cost, the anode and/or the cathode should be in the form of a metallization on the carrier plate of the detector plate, the metallization(s) not being present in a single plane only. This configuration offers multiple options for designing the interior used as ionization chamber and for arranging the electrodes in this space. The options for contact with additional printed circuit boards also turn out to be highly advantageous. This further has an advantageous effect on the production process and on the qualities of the radiation measurement devices using detector plates of this kind.
Abstract:
A muon tracker includes a drift tube detector having a plurality of drift tube arrays, a detection time-difference calculation circuit configured to calculate a detected time-difference between a plurality of time data detected at least two of the drift tubes, a time-difference information database that stores a relationship between a plurality of predetermined tracks of the muon passing the drift tube detector and a predetermined time-difference of possible detected time data to be detected at least two of the drift tubes where each of the plurality of predetermined tracks passes, a time-difference referring circuit configured to refer the detected time-difference calculated at the detection time-difference calculation circuit with the predetermined time-difference stored in the time-difference information database, and a muon track determining circuit configured to determine a muon track as the predetermined track of the muon corresponding to the predetermined time-difference that matches the best with the detected time-difference.
Abstract:
A Geiger-Muller counter tube includes a cylindrical enclosing tube, an anode electrode, a cylindrical cathode electrode, an inert gas, and a quenching gas. The cylindrical enclosing tube has a sealed space. The anode electrode is disposed inside the space and formed in a rod shape. The cylindrical cathode electrode surrounds a peripheral area of the anode electrode inside the space to have an opening. The inert gas and the quenching gas are sealed inside the space. At least one of the anode electrode and the cathode electrode includes a plurality of electrodes inside the enclosing tube.
Abstract:
A Geiger-Muller counter tube includes an enclosing tube, an anode conductor, a cathode conductor, an inert gas, and a quenching gas. The enclosing tube is at least partially cylindrical and has a sealed space. The anode conductor includes an anode electrode and a linear first metal lead portion. The anode electrode is arranged inside the space and formed in a rod shape. The first metal lead portion is connected to the anode electrode and supported at an end of the enclosing tube. The cathode conductor includes a cylindrical cathode electrode and a linear second metal lead portion. The cathode electrode surrounds a peripheral area of the anode electrode inside the space. The second metal lead portion is connected to the cathode electrode and supported at the end of the enclosing tube. The cathode electrode has a side surface through a part of which a through-hole passes.
Abstract:
A radiation measurement apparatus for measuring radiation includes a first and second Geiger-Muller counter tubes and a radiation-direction calculating unit. The first Geiger-Muller counter tube seals an electrode within a circular pipe-shaped enclosing tube that extends in a straight line. The first Geiger-Muller counter tube is arranged along a first direction. The second Geiger-Muller counter tube seals an electrode within a circular pipe-shaped enclosing tube that extends in a straight line. The second Geiger-Muller counter tube is arranged in a second direction intersecting with the first direction. The radiation-direction calculating unit is configured to compare a first detection signal and a second detection signal with one another to calculate a direction of radiation to be emitted from the sample. The first detection signal is output from the electrode of the first Geiger-Muller counter tube. The second detection signal is output from the electrode of the second Geiger-Muller counter tube.
Abstract:
A Geiger-Muller counter tube includes a cylindrical enclosing tube, an anode electrode, a cylindrical cathode electrode, a bead, an inert gas, and a quenching gas. The cylindrical enclosing tube has a sealed space. The anode electrode is disposed inside the space and formed in a rod shape. The cylindrical cathode electrode surrounds a peripheral area of the anode electrode inside the space. The bead is formed of an insulator and having a through-hole in the center, the anode electrode passing through the through-hole. The bead is secured to the anode electrode in a position where the anode electrode is surrounded by the cathode electrode. The inert gas and the quenching gas are sealed inside the space. The bead prevents a direct contact between the anode electrode and the cathode electrode.
Abstract:
A Geiger-Mueller ("GM") tube containing a noble gas mixture of about 98-99.9% Ne and the remainder Ar, and in addition containing from 2-5% ethylene as the quench gas, provides high stability and high count rates in the temperature range from about -100.degree. C. to about 200.degree. C. When this GM tube is provided with a sleeve-and-screen liner in electrical contact with an outer cathode, the tube exhibits exceptional sensitivity. The sleeve may be a continuous deposit of a heavy metal having an atomic number from about 73 to about 83, deposited on the inner surface of the cathode tube, or the sleeve may be a foil liner of tungsten or tantalum. The screen is woven of metal wire on which is deposited a heavy metal.
Abstract:
A halogen quenched, Geiger-Muller tube having a glass supported stannic oxide coated tubular glass anode centrally positioned in a cylindrical platinum iridium cathode is disclosed.