Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A method of manufacturing an electromagnetic wave shield for a plasma display panel having a first panel having an image-displaying surface, the method including coating the image-displaying surface of the first panel with a coating solution to form a hydrophobic layer; applying a conductive ink to the hydrophobic layer utilizing an ink-jet applicator to form a pattern of the conductive ink; and heating the conductive ink and the hydrophobic layer to form a conductive mesh pattern on the hydrophobic layer.
Abstract:
Sulfur-containing phosphor powders, methods for making phosphor powders and devices incorporating same. The powders have a small particle size, narrow particle size distribution and are substantially spherical. The method of the invention permits the continuous production of such powders. The invention also relates to products such as display devices incorporating such phosphor powders.
Abstract:
Excimers are formed in a high pressure gas by applying a potential between a first electrode (14, 214) and a counter electrode (25, 226) so as to impose an electric field within the gas, or by introducing high energy electrons into the gas using an electron beam. A phosphor for converting the wavelength of radiation emitted from the formed excimers is disposed within the gas and outside a region (62, 162) where the excimers are expected to be formed, so as to avoid degradation of the phosphor.
Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A planar fluorescent and electroluminescent lamp having two pairs of electrodes. Planar electrodes on an outer surface of the lamp create a plasma arc by capacitive coupling. The planar electrodes also cause embedded phosphor to emit light on the electroluminescent phenomena. In one embodiment, a second chamber is on top of the first chamber and light passes from a primary chamber through the second chamber, and is emitted by the lamp.
Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber, and an optical system for collecting plasma radiation.
Abstract:
A pulsed electron ablation (PEA) utilizes a source of a high power density electron beam which includes a cathode plasma supplying electrons for generation of the electron beam and an anode plasma having a front layer extending in the processing chamber in a counter relationship with the front layer of the cathode plasma. A gas supply line is coupled to the processing chamber to supply a process gas in a controlled fashion to the anode to create a pressure gradient between the anode and the cathode plasma, and to stimulate an intense ionization of the process gas in the vicinity to the anode to form the anode plasma. The power density of the electron beam sharply increases as the result of an interaction of said cathode and anode plasmas at the double space charge contact layer formed between their fronts. A target is positioned in the processing chamber a predetermined distance from the front layer of the cathode plasma and is exposed to the electron beam to produce stream of the ablation plasma.
Abstract:
Phosphor powders and a method for making phosphor powders. The powders are oxygen-containing, such as metal oxides, silicates, borates or titanates and have a small particle size, narrow particle size distribution and are substantially spherical. The method of the invention advantageously permits the continuous production of such powders. The invention also relates to improved devices, such as display devices, incorporating the phosphor powders.