Methods of treating cancers comprising FGFR1 gene amplification are provided. In some embodiments, the methods comprise administering a fibroblast growth factor receptor 1 (FGFR1) extracellular domain (ECD) and/or an FGFR1 ECD fusion molecule. In some embodiments, the methods comprise administering a fibroblast growth factor receptor 1 (FGFR1) extracellular domain (ECD) and/or an FGFR1 ECD fusion molecule in combination with at least one additional therapeutic agent.
Embodiments of the present invention provide for novel therapies, pharmaceutical compositions and methods for insulin independence utilizing a new optimized hamster Reg3 gamma peptide, which is new to the art and has not previously been considered for development in the 30 year history since its discovery. Methods, pharmaceutical compositions and therapies novel to the prior art are utilized in this invention to render patients with recent onset and existing type 1 diabetes insulin independent by an optimized hamster Reg3 gamma peptide and an immune tolerance agent for type 1 patients to become insulin independent and used alone without an immune tolerance agent for type 2 diabetes. While not wishing to be bound by theory, optimized Reg3 gamma peptides increases beta cell generation by its demonstrated properties shown within of transforming ductal pancreatic cells into new islets.
Methods for treating a subject for pancreatic cancer via administration of small anti-inflammatory peptides are disclosed. The peptides may be administered in conjunction with another therapeutic agent, such as a chemotherapeutic agent, or therapeutic regimen. In some cases, the anti-inflammatory peptide that finds use in the subject methods has the amino acid sequence Lys-Phe-Arg-Lys-Ala-Phe-Lys-Arg-Phe-Phe (SEQ ID NO:1) or a multimer, derivative, or variant thereof.
The invention features pharmaceutical compositions, methods, and kits featuring dosing gimens and oral dosage formulations for administration of echinocandin class compounds.
The present invention provides a composition for preventing, improving, or treating Th1-mediated immune diseases or Th2-mediated immune diseases, an antihistamine composition, and an anti-inflammatory composition. The present invention provides a method for preventing, improving, or treating Th1-mediated immune diseases or Th2-mediated immune diseases, a method for inhibiting the release of histamine, and a method for preventing, improving, or treating inflammatory disorders. The composition according to the present invention has excellent inhibitory activities for IL-4 generation, the degranulation of mast cells, COX-2, 15-NOX, and the passing of allergens from through an intestinal epithelial cell layer, or an excellent Treg cell inducing activity. Further, the present invention provides a detailed mechanism of action of a natural substance and a food-drived antiallergenic substance, and provides stability, a reduction in production costs, and improved convenience of use by using a natural substance as a material.
Described herein are solid pharmaceutical compositions of brown algae extracts and methods for making solid pharmaceutical compositions of brown algae extracts. In some embodiments, the brown algae extract is derived from Ecklonia cava.
The present invention relates to the identification, isolation, expansion and characterization of a specific type of multipotent adult cardiac stem cell. These adult stem cells are characterized in that they naturally express a specific pattern of markers, which can be used to assist with their isolation and expansion. In particular, the cells express SOX17 and GATA4, but do not express Oct4, Nanog, c-kit and telomerase reverse transcriptase. These cells are able to differentiate into one or more of the following cell types: adipocytes, osteocytes, endothelial cells and/or smooth muscle cells. They also display an unprecedented capacity for immunoregulation as well as providing, activating and/or inducing repair of damaged cardiac tissue. These adult stem cells may be used as therapeutic agents including, without limitation, for the regeneration of tissue, particularly for regeneration of damaged cardiac tissue, such as myocardium.
Oral dosage forms of osteoclast inhibitors, such as zoledronic acid, in an acid or a salt form can be used to treat or alleviate pain or related conditions, such as complex regional pain syndrome.
The invention relates to compounds of general formula (I) and pharmaceutically acceptable salts thereof: (I) wherein Ri is selected from an SCN— group or is an RCONH— group; in particular, where Ri=RCONH, R is selected from an aromatic benzene ring substituted with an SCN— group in the ortho, meta or para position, according to the following formula: SCN— or R is a C1-C4 alkyl chain, substituted with an SCN— group; n can be equal to 0 or else 1. The invention also relates to the use of such compounds for the treatment of osteoporosis and in general of bone pathologies characterized by a progressive loss of bone mass, for example rheumatoid arthritis, hyperparathyroidism or bone tumor metastases.
The present invention provides compounds represented by formula (I), pharmaceutically acceptable salts thereof, N-oxides thereof, solvates thereof or prodrugs thereof (wherein the characters are as defined in the description). The compounds represented by formula (I) have affinity and selectivity for the gamma-aminobutyric acid A receptor subunit alpha 5 (GABAA α5) and act as GABAA α5 negative allosteric modulators (GABAA α5 NAM), so that they are useful in the prevention and/or treatment of diseases which are related to the GABAA α5 such as Alzheimer's disease.
Described herein are methods and compositions for treating HER2-amplified cancer. The methods include administering to an individual in need thereof ibrutinib.
Anti-ulcerative colitis compounds include quinazoline derivatives having the following structural formula: wherein R is H, OH, or OCH3, R1 is OH or OCH3, and R2 is OCH3 or a pharmaceutically acceptable salt thereof.
Described is a composition comprising (a) a population of particles of an aripiprazole prodrug having a volume based particle size (Dv50) of less than 1000 nm and (b) at least one surface stabilizer comprising an adsorbed component which is adsorbed on the surface of the aripiprazole prodrug particles and a free component available for solubilization of the aripiprazole prodrug. The surface stabilizer to prodrug ratio provides the optimal quantity of free surface stabilizer for the purposes of producing a lead-in formulation. Also described are methods of treatment using the aforementioned composition.
Conjugates of SN-38 that provide optimal drug release rates and minimize the formation of the corresponding glucuronate are described. The conjugates release SN-38 from a polyethylene glycol through a β-elimination mechanism.
The present invention is directed to sublingual formulations containing fentanyl, a pharmaceutically acceptable salt thereof, or derivative thereof, suitable for administration to a patient, and methods for treatment with the formulations.
The present invention is directed to selective AT2 receptor agonist or a pharmaceutically acceptable salt thereof for use in treatment of cachexia, preferably for use in treatment of cancer cachexia.
The present disclosure relates to: (a) methods of using stabilized pharmaceutical dosage forms comprising atrasentan, or a pharmaceutically acceptable salt thereof, and, optionally, another therapeutic agent to treat type 2 diabetes, microalbuminuria or macroalbuminuria; and (b) methods for the preparation of such pharmaceutical dosage forms.
The subject invention relates to a variety of formulations of bipolar trans carotenoids including pharmaceutical compositions for oral delivery of a bipolar trans carotenoid comprising i) a bipolar trans carotenoid, ii) a cyclodextrin, and iii) a coating. The invention also relates to preparation of such formulations and their uses.
The present application relates to combination treatments for bacterial infections. For example, the application relates to the use of one or more β-lactam antibiotics and one or more compounds of Formula I: (I) for treatment of a metallo-B-lactamase-expressing bacterial infection or a disease, disorder or condition arising from a metallo-B-lactamase-expressing bacterial infection.
A method of treatment for third spacing is provided. The method includes identifying an adverse factor, which includes conditions causing an increase in vascular permeability resulting in third spacing. The method also includes diagnosing the patient with third spacing, which can include third spacing of fluids, materials, or both. The patient is treated with a therapeutically effective amount of a non-increased vascular permeability modifier loop diuretic, such as a non-sulfonamide loop diuretic like ethacrynic acid or ethacrynate sodium.
The present invention relates to method of treatment of hepatitis C using bufexamac or a derivative thereof. The methods of the present invention can be used in patients with hepatitis C administering bufexamac or a derivative thereof in combination with one or more anti-hepatitis C drugs.
The present invention relates to compositions, devices and methods of delayed and sustained release of energy molecules for brain function to treat nocturnal hypoglycemia. The composition comprises an energy molecule required for human brain function; wherein the release of the energy molecule is delayed and then sustained over a period of time. The device is a transdermal delivery device comprising a reservoir layer containing the composition and a skin permeation enhancer formulation, an adhesive layer, a backing layer and a release liner. The method comprises administering the composition either orally or through the transdermal delivery device to a subject in need thereof immediately prior to going to sleep.
Provided are compositions and methods for producing water-soluble powders that contain additives such as essential fatty acids, including omega-3 fatty acids, omega-6 fatty acids, conjugated fatty acids, and other fatty acids; phytochemicals, including phytosterols; other oils; and coenzymes, including coenzyme Q10, and other oil-based additives.
Human sperm is mobile only in a slightly acidic environment which is the normal state of the human vagina. Soap is a very basic material; introduction of a small amount of soap into the vagina before intercourse will raise the pH, a condition which causes the sperm to coagulate into a ball, that exits the vagina upon simply rinsing with water. The present invention is a composition of soap, water, and other natural materials that can be used as a vaginal suppository.
The present invention relates to a novel sebum secretion inhibitor and use thereof for the production of cosmetic and pharmaceutical, notably dermatological, compositions, intended for preventing and/or reducing the secretion of sebum and notably of squalene.
The invention relates to a composition containing between 0.1 and 30 wt.-% copolyamide (COPA) and between 70 and 99.9 wt.-% of a medium acceptable for cosmetic, perfume and/or pharmaceutical use. In particular, the invention relates to a method for incorporating a copolyamide into a cosmetic, perfume and/or pharmaceutical medium. The invention also relates to the use of a copolyamide (COPA) for the production of a cosmetic, pharmaceutical or perfume product, said COPA being incorporated in the form of a composition in accordance with the invention.
The present invention relates to compositions containing polymeric, ionic compounds comprising imidazolium groups. In particular, it relates to the use of polymeric, ionic compounds comprising imidazolium groups in personal care compositions and/or in biocide compositions.
Kit for whitening a body surface of a user, comprising: an oxidizing composition application device (12); wherein the kit comprises an activator sheet (14) which is movable independently of the oxidizing composition application device (12), the activator sheet (14) comprising an outer deformable substrate (50) intended to be applied on an oxidizing composition (34) placed on the skin of the user, the activator sheet (14) comprising an activator composition (52) carried by the outer substrate (50).
The present invention relates to a process for dyeing keratin fibers in which a mixture is applied, this mixture being obtained from: ⋅a dye composition comprising at least one oxidation dye precursor, and ⋅an oxidizing composition comprising at least one chemical oxidizing agent, ⋅at least one of the compositions being dispensed from a pressurized container, ⋅the mixture of the two compositions comprising at least one saturated or unsaturated C8-C40 fatty alcohol comprising from 1 to 10 mol of glycerol, preferably from 1 to 5 mol of glycerol and/or at least one oxyalkylenated carboxylic acid ether in acid or salified form, and also to a device suitable for performing this process.
A system for coupling a user to a support apparatus includes a harness for the user, a hoist, and frame. The harness and the hoist have co-operable attachment means for releasably coupling the harness to the hoist. The frame is configured to receive the user, where the harness and the frame have co-operable attachment means for releasably coupling the harness to the frame.
The subject matter of the invention is an articulation (1) with controllable stiffness and a force-measuring system, comprising a first device (20) that comprises a frame (4) having a curved face and connected to a first motor element (2), the first device (20) regulating the position of the articulation (1), and a second device (22) that regulates the stiffness of the articulation (1) and comprises a thrust element (15), the movement (D) of which determines the pre-compression of a resistive element (11) and thus the stiffness of the articulation (1); the first motor element (2) causes the frame (4) to rotate such that a wheel (8) of the second device (22) rolls on the curved face of the frame (4), causing the resistive element (11) to be compressed (C) via a transmission rod (7) associated with the wheel (8) and with the resistive element (11).
Catheter monitor integration with patient support systems, such as patient beds, and with other healthcare communication systems including hand hygiene systems is provided. A patient bed that transmits bed data and catheter monitor data is disclosed. When catheter tubing is connected to a catheter monitor integrated into a patient bed, the bed automatically implements a falls prevention protocol. A countdown timer pertaining to removal of catheter tubing from a patient is displayed on one or more display devices. Monitoring for caregiver handwashing compliance in connection with use of a catheter monitor or a catheter kit is also provided.
An improved walker is disclosed. The walker may include a left frame spaced apart from a right frame and connected by at least one horizontal connecting member. The lower portion of each of the left and right frames includes a foot platform that is rotatably mounted and moveable between a retracted position and an engaged position, in which the foot platform is in contact with and resting on a floor surface. In use, a person may use the walker to assist the person rising from a sitting position to a standing position so that the person can then proceed to use the walker to assist the person in walking.
A collar with a relieved area (3) strategically placed in-between the upper and lower wheelchair leg-rest attachments (2) so a leg-rest can still be removed and installed and where the leg-rest locking arm (6) can lock into place unimpeded. A second collar (4) attached directly below the lower wheelchair leg-rest attachment (2). Both collars (3 and 4) are locked into place using flat-head screws (5). Collars (3 and 4) are of sufficient size to extend horizontally beyond the typically exposed mainframe leg-rest attachments (2). When installed at both leg-rest attachment areas (2) the invention protects a wheelchair user from a laceration injury.
A seat assembly including a seat, a support plate configured to pivot with respect to the seat, a slide plate slidably mounted to the support plate, and a pivot arm positioned between the support plate and the slide plate and connected to the slide plate and the seat. When the support plate is pivotally adjusted with respect to the seat, the pivot arm causes the slide plate to slide along the support plate.
A disposable diaper (10) in this invention is comprising designs (300a, 300b) that are visually recognizable from a non-skin contact surface side S of the disposable diaper (10) is provided in a region spanning a crotch region (25) and extending to a front waistline region (20) and a rear waistline region (30). A method of arranging the design (300b) provided in a region closer to a side of the front waistline region (20) than the crotch stretching unit (200a) is configured to be different from a method of arranging the design (300a) provided in a region closer to a side of the rear waistline region (30) than the crotch stretching unit (200a).
Described herein are a wearable apparatus and methods for detecting the presence of a targeted substance in a liquid. For example, the wearable apparatus can be a fingernail that detects illicit drugs in a beverage. The wearable apparatus comprises a detection layer comprising an indicator that is configured to display a signal upon the detection of an interaction with the targeted substance. In some examples, the wearable apparatus can include a lateral flow assay.
The present invention is related to a method for folding an article into three parts comprising first folding a leading end portion of the article to form a first folded article, and second folding a trailing end portion of the first folded article, wherein the first folded article is transported with a moving direction change no higher than about 45 degree.
A reduced-pressure, wound closure system is presented that generates a closing force on a surface wound and optionally provides reduced pressure to a body cavity or tissue site. The sealed contracting member, when placed under reduced pressure, generates the closing force. One illustrative system includes a first attachment member and a second attachment member, a sealed contracting member coupled to the first attachment member and the second attachment member, and wherein the closing force is generated between the first attachment member and the second attachment member when reduced pressure is supplied to the sealed contracting member. Other systems and methods are presented.
Hearing protection devices that contain an FM-receiver and antenna connected to one another, each being disposed interiorly in a protective muff of the hearing device, where the antenna is molded into a plastic housing in the protective muff are described, as are methods of making protective muffs used in such a device.
System and method for providing diagnostic, imaging procedures and surgical laser treatments generating patterns of laser light on target tissue of a patient. The system includes aiming and treatment light beams originating from the same visible laser emitting diode, a scanner for generating patterns of points of light of the generated light, a controller, and a user interface that allows the user to select one of several possible point of light patterns, adjusts the point of light intensity and/or duration.
Disclosed are devices, methods and systems for treatment of eye disease such as glaucoma. Implants are described herein that enhance aqueous flow through the normal outflow system of the eye with minimal to no complications. The implant can be reversibly deformed to a first shape, such as a generally linear shape conducive to insertion. Upon insertion, the implant can deform to a second shape, such as a generally non-linear shape conducive to retention within the eye. The shape also improves fluid flow from the anterior chamber and prevents or reduces clogging.
A knee brace assembly with a proximal compression system adapted to be secured to the thigh and a distal compression system adapted to be secured to the calf. The brace includes lateral and distal hinge assemblies connecting the proximal compression system and the distal compression system to permit rotational movement of the proximal compression system with respect to the distal compression system. At least one inelastic strap extends around the proximal compression system and the distal compression system. The strap is leveraged to tighten the proximal compression system and the distal compression system to compress soft tissue in the thigh and calf when the leg is extended, but to release the proximal compression system and the distal compression system when the leg is in flexion.
A unique, universal Zero-Profile Expandable Intervertebral Spacer (ZP-EIS) device for fusion and distraction throughout the entire spine is provided which can be inserted via anterior, anterolateral, lateral, far lateral or posterior surgical approaches dependent on the need and preference. Multiple ZP-EIS embodiments each with unique mechanisms of calibrated expansion are provided. Two of these embodiments incorporate bi-directional fixating transvertebral (BDFT) screws and five other embodiments do not incorporate BDFT screws. A tool for implantation into the intervertebral device and calibrated device expansion is also disclosed.
Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
An endoscopic system for winding and inserting a mesh into an abdominal cavity of a patient is provided. The endoscopic system includes an introducer having an elongated shaft extending distally therefrom. The shaft includes a split portion that defines an opening therealong. The split portion is configured to support the mesh within the opening. A furler defining a lumen is engageable with the split portion of the shaft and configured to exert a radial force onto the mesh that is supported by the split portion. Rotation of one of the furler and introducer with respect to the other winds the mesh inside the furler to a diameter smaller than a diameter of the lumen of the furler.
Apparatus and methods for endodontic treatment of teeth provide effective cleaning of organic material (such as pulp and diseased tissue) from the root canal system. In an embodiment, a compressor system generates high pressure liquid (e.g., water) that flows through an orifice to produce a high-velocity collimated jet of liquid. The high-velocity jet is directed toward a surface of a tooth, for example, an exposed dentinal surface, and impingement of the jet onto the surface generates an acoustic wave that propagates throughout the tooth. The acoustic wave effectively detaches organic material from dentinal surfaces and tubules. The detached organic material is flushed from the root canal system by the liquid jet and/or by additional irrigation.
Improved dental models for use in dental procedures are provided. In one aspect, a unitary dental model of an intraoral cavity of a patient having a dental implant comprises a physical surface representative of gingival tissue of the patient. The model can comprise a channel shaped and oriented to receive an abutment corresponding to a physical abutment to be connected to the dental implant, in which the channel extends to an opening in the physical surface. The channel can comprise a first portion shaped to receive and constrain a corresponding structure of the abutment to a position and orientation and a second portion shaped to receive a fastener to couple the abutment to the unitary dental model. In many embodiments, the first portion comprises a shoulder shaped to receive the corresponding structure of the abutment in order to position the abutment along the channel.
An inclined abutment for a cemented prosthesis in dental implantology. The abutment has a supragingival portion having a substantially truncated-cone shape with an elliptical base and having a longitudinal axis, an emergence surface coinciding with the elliptical base of the supragingival portion, and a transmucosal portion which has an elliptical base coinciding with the emergence surface and a longitudinal axis which ends at the apex with an antirotational connection for the insertion of the abutment in use. The volume of the supragingival portion remains essentially constant upon variation of the angle defined by the longitudinal axis of the supragingival portion and the longitudinal axis of the transmucosal portion, when the dimensions of the emergence surface and the height of the supragingival portion remain unchanged with respect to the longitudinal axis thereof.
Cheek and lip expansion devices including an upper frame portion configured to extend about an upper dental arch, and a lower frame portion configured to extend about a lower dental arch. The upper and lower frame portions may each include first and second side members, each with anterior and posterior regions. An upper connecting member may extend between the anterior regions of the upper side members. A lower connecting member may extend between the anterior regions of the lower side members. The posterior regions of the upper and lower side members on respective sides of the frame are joined to one another to form a bendable radius that resists bending at a distinct point. The bendable radius on opposed sides permits the frame to be collapsed top to bottom. The frame may be collapsible side-to-side. A posterior crossbar may be provided extending between the posterior regions of the side members.
A pen-like dispenser for dispensing a dental material has a handle and a cover which are attached for rotation relative to each other about a longitudinal axis of the dispenser, and a cartridge for holding the dental material and a screw plunger for extruding the dental material from the cartridge by screwing action. The cartridge and the cover in combination form a rotary slide valve which is operable by rotation about the longitudinal axis between a storage position, in which the cover closes a dispensing outlet of the cartridge, and a dispensing position, in which an opening in the cover opens the dispensing outlet of the cartridge. A relative rotation between the screw plunger and the handle about the longitudinal axis is restricted, and a relative rotation between the cartridge and the cover about the longitudinal axis is enabled within a predetermined rotation angle and restricted otherwise.
A dental implant site preparation tool (10) includes a shaft (12) and a working end (14). The working end includes a cutting surface (16) that includes cutting features. The working end (14) also includes a substantially smooth tip (18) that may have a convex shape. A method of preparing a dental implant site includes working the tool (10) so as to create a shape that matches that of an implant.
The invention concerns a dental surgery device (1), comprising a punching member (15) having a cutting end part (16) suitable for removal of tissue on a jaw bone of a patient, and a guiding sleeve (7) for guiding the punching member (15) during a punching operation. The guiding sleeve (7) has a first side (8) intended to face away from the jaw bone and a second side (9) intended to face towards the jaw bone during a punching operation, and a guiding through-hole (101) extends from the first side (8) to the second side (9). The punching member (15) is adapted to fit into the guiding through-hole (101) such as to allow guidance by the guiding sleeve (7) when the punching member (15) is moved in an axial direction through the guiding through-hole (101). The invention is characterized in that the punching member (15) and the guiding sleeve (7) are provided with complementary guiding means configured to control the axial movement of the punching member (15) through the guiding through-hole (101) during the punching operation, wherein the complementary guiding means comprise at least one guiding element (17) that extends in a radial direction and at least one guiding groove (18) adapted to receive the guiding element (17) and guide its movement along the guiding groove (18), wherein the guiding groove (18) extends both in a circumferential direction as well as in an axial direction such that, when the guiding element (17) and the guiding groove (18) are engaged, a rotation of the punching member (15) in relation to the guiding sleeve (7) forces the punching member (15) to move in relation to the guiding sleeve (7) in the axial direction thereof.
Orthopedic fixation devices, assemblies, and methods. The orthopedic fixation devices may comprise coupling elements, hook components, and/or bone fasteners. The bone fastener may be loaded into the coupling element through the bottom of a bore in the coupling element. The orthopedic fixation devices may include modular locking clamp assemblies that can be fixed onto fasteners that are already implanted in bone. The modular locking clamp assemblies can include polyaxial locking clamp assemblies, as well as monoaxial locking clamp assemblies. The hook components may include a female hook component slidably coupled to a male hook component.
Systems for insufflation and recirculation of insufflation fluid in a surgical procedure include a control unit having a fluid pump, a supply conduit, a return fluid conduit and a pressure-controlled valve. The pressure-controlled valve is in fluid communication with an insufflation gas supply, the supply conduit and the return conduit and is adapted and configured to respond to pressure control signals to adjust position and thereby system flow parameters, to reduce entrainment of air from the surrounding environment, and to increase the concentration of insufflation gas in an operative space, and/or to reduce an overpressure condition in the operative space.
An access system for endoscopic operations includes of a trocar, a cover that is fittable on the trocar and at least one spreading element having a retaining portion and an effector portion, wherein the access system has, between the trocar and the cover in the fitted state, a receiving region for the retaining portion of the at least one spreading element. Furthermore, the access system can include an extraction bag which is expanded by the effector portion of the at least one spreading element.
Systems, methods, and devices for the treatment of acute ischemic stroke that provide immediate blood flow restoration to a vessel occluded by a clot and, after reestablishing blood flow, address the clot itself. Immediate blood flow restoration advantageously can facilitate natural lysis of the clot and also can reduce or obviate the concern for distal embolization due to fragmentation of the clot. Several embodiments of the invention provide for progressive, or modular, treatment based upon the nature of the clot. For example, the progressive treatment can include immediate restoration of blood flow, in-situ clot management, and/or clot removal depending on the particular circumstances of the treatment. The in-situ clot management can include, for example, lysis, maceration, and/or removal.
A vascular closure assembly is configured to seal a vascular puncture in a vessel. The vascular closure assembly includes a balloon location device and a sealant delivery device. The balloon location device includes an inflation tube and an inflatable balloon positioned at a distal end of the inflation tube and operable, when inflated, between a first position blocking blood flow through the vessel and a second position sealing the puncture from within the vessel. The sealant delivery device includes a sealant delivery tube having a first lumen sized to advance over the inflation tube to the puncture, and a second lumen configured to deliver a volume of sealant to the puncture. The first lumen may include a rapid exchange feature.
Apparatus for generating, applying and maintaining compression to a site in a human or animal body, the apparatus comprising: a staple comprising: a bridge configured to be elastically bendable; a first leg connected to the bridge by a first hinge region configured to be elastically bendable; and a second leg connected to the bridge by a second hinge region configured to be elastically bendable; wherein the first hinge region comprises a first hole configured to mate with a first element of a delivery device and the second hinge region comprises a second hole configured to mate with a second element of a delivery device; and wherein the first and second legs are angled toward one another when they are in an unstrained state; whereby, when the staple is mounted to a delivery device so that the first hole of the first hinge region mates with a first element of a delivery device and the second hole of the second hinge region mates with a second element of a delivery device, and when the delivery device applies a force to the bridge of the staple so as to reconfigure the bridge of the staple, the first and second legs are pivoted away from one another toward a parallel disposition.
Closure systems, kits and methods for sealing a percutaneous puncture or other opening in a blood vessel wall, body cavity or biopsy tract are disclosed. A closure system can comprise an implant assembly, a delivery assembly, and an introducer sheath. The closure system can further comprise a valve bypass and a dilator. The implant assembly can include an inner member, a sealing membrane, and an outer member, each of which can be delivered by the delivery assembly. The inner member can be extended through the puncture or opening and positioned adjacent an inner tissue surface. The outer member can be positioned adjacent an outer tissue surface. The sealing membrane can have a distal end attached to the inner member, a proximal end including an opening configured to receive the outer member, and a mid-region therebetween. The outer member, when expanded from a delivery configuration to a sealing configuration, can urge the mid-region of the sealing membrane radially outward such that its outer surface can contact and conform to a perimeter edge of the puncture or opening.
A surgical instrument comprises a steering mechanism. The steering mechanism comprises a handle at a proximal end of the surgical instrument. The handle includes a plurality of controls for controlling a movement of the surgical instrument. The steering mechanism also comprises a hub that rotatably mates with the handle and a housing positioned about the hub. The handle, the housing, and the hub communicate with each other to provide at least a first degree of freedom and a second degree of freedom. An articulation region is at a distal end of the surgical instrument. A movement of the steering mechanism handle in one and only one of the first or second degrees of freedom relative to at least one of the housing or the hub translates to a movement of the articulation region in a single plane of motion.
An X-ray diagnostic apparatus in embodiments includes a calculating module, a generator, and a changing module. The calculating module calculates feature quantity concerning a flow of a contrast material for each pixel in a predetermined section based on temporal transition in signal intensity of the contrast material in a predetermined section of a plurality of X-ray images radiographed with time by using the contrast material. The generator generates a first color image in which color information corresponding to the feature quantity concerning the flow of the contrast material in a first section as the predetermined section is reflected in each pixel. The changing module changes the predetermined section to a second section that is within the first section. the generator generates a second color image in which color information corresponding to the feature quantity concerning the flow of the contrast material in the second section is reflected in each pixel based on the color information corresponding to the second section out of the color information corresponding to the feature quantity concerning the flow of the contrast material in the first section and the feature quantity calculated in the second section.
A mobile radiography apparatus has a moveable (e.g., wheeled) transport frame and an adjustable column mounted at the frame. A boom apparatus supported by the adjustable column can support an x-ray source assembly. Radiation or X-ray source assembly methods and/or apparatus embodiments can provide mobile radiography carts a capability to direct x-ray radiation towards a subject from one or a plurality of different source positions, where the X-ray source assembly includes a first x-ray power source and a second plurality of distributed x-ray sources disposed in a prescribed spatial relationship.
A detection device acquires traveling information and identification information of a driver from a first device installed in a vehicle and acquires a vital sign and the identification information of the driver from a second device that monitors the vital sign. The detection device determines probability of detecting a predetermined event, based on the vital sign in proximity of a certain time, when the predetermined event is detected at the certain time based on the traveling information and outputs a determination result.
Provided are a photoplethysmographic measurement apparatus, a photoplethysmographic measurement method, and an apparatus for measuring a biosignal. The photoplethysmographic measurement apparatus includes a probe, a light emitter comprising a nonelectrical light source and disposed at one end of the probe, the light emitter configured to illuminate a measurement part, and a light receiver disposed at another end of the probe and configured to detect light reflected or transmitted by the illuminated measurement part.
In a special mode for imaging an oxygen saturation level of blood, an internal body portion is imaged under irradiation with special illumination light. A light amount evaluation section judges based on an obtained image whether or not a reflected light amount of the special illumination light is adequate for calculating the oxygen saturation level. When the reflected light amount is judged to be adequate, a normal image sensor captures an image under irradiation with the special illumination light. When the reflected light amount is judged to be low, a high-sensitivity image sensor is used. In using the high-sensitivity image sensor, a binning process is applied to an image signal in accordance with the reflected light amount of the special illumination light, in order to further sensitize the image signal.
A device for the real-time in vivo detection of a number of conditions within the patient, including CTCs, circulating nucleic acids, other circulating elements, blood pressure, heart rate data, pulse oxygen concentration, serum electrolyte concentrations, blood glucose, and pH, the device having an implanted subcutaneous access port in the chest region and a catheter having a terminus in the superior vena cava, the device having microelectronic circuitry with a rechargeable energy source encased in a titanium shell, an NIR laser sealed in the titanium-enclosed circuitry platform, and NIR-specific optical fibers (nir-FO) for transmitting the NIR photons to the end of the catheter tube in the superior vena cava. Scattered NIR photons are collected through the end of a second nir-FO bundle and transmitted back to the detector and microprocessor on the portal platform.
The biological information detection sensor supply device is provided with a main body case having a supply port to which a biological information measurement device can be attached, a housing unit for housing a biological information detection sensor and a sensor supply film including a cover film and a holding film for sandwiching the biological information detection sensor, and a supply unit for supplying the biological information detection sensor from the housing unit to the supply port. The supply unit supplies the biological information detection sensor to the supply port, and separates the holding film and the cover film from the sensor supply film in a state before the biological information detection sensor is supplied to the supply port. At the supply unit, the biological information detection sensor supplied to the supply port is fitted to the biological information measurement device fitted to the supply port.
A method and system for estimating a specific absorption rate of a tissue region prior to performing a magnetic resonance (MR) imaging scan on the tissue region. The method comprises radiating the tissue region with a plurality of short pulses, wherein the tissue region emits thermoacoustic signals responsive to the short pulses, receiving the thermoacoustic signals by at least one ultrasonic transducer, calculating a temperature rise of the tissue region based on the received thermoacoustic signals, scaling the temperature rise to estimate a temperature rise of the tissue region resulting from an MR imaging scan, and estimating the specific absorption rate of the tissue region based on the estimated temperature rise.
Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array and the signals are plotted in multi-dimensional space with each axis corresponding to a channel in the electrode array. An excursion direction of global activation in the multi-dimensional space is estimated and a change in vectors of the sampled signals over time is determined. Signals with vectors that change over time in the excursion direction are suppressed.
A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module. A computer within the processing module calculates the physiological parameter from the telemetry signal and represents this data in numerical, graphical, or analog format.
A portable medical device for communication of medical data information has a medical device part that includes a first processor and first storage means, and means for executing one or more medical related functions, a communication device part comprising a second processor, second storage means, and communication means. The medical device part and the communication device part are connected allowing for exchange of data information according to a predetermined protocol. The exchange of communication may be under the control of the medical device part, but the functionalities of each device part otherwise is separated providing for easy interchangeability of the communication device part or the medical device part. Also disclosed is a method for communication of medical data information.
An apparatus for motion compensated modelling of a parameter of an eye, comprising: a first measuring means for measuring a plurality of position parameters of the eye with respect to an optical reference coordinate system of the apparatus; a second measuring means for measuring an interference signal at a plurality of optical reference coordinates, wherein the measurement of the plurality of position parameters and measurement of the interference signal are time synchronized; means for correcting the interference signal to account for a displacements of a parameter of the plurality of position parameters; and means for modelling the eye parameter based at least in part on the corrected interference signal.
A method of inserting a treatment tool includes: making a puncture needle project from a first channel of an endoscope and puncturing an upper digestive tract to place a distal end of a needle tube of the puncture needle inside a biliary tract while observing an ultrasound image; inserting a guide wire into the biliary tract via the needle tube and making a distal end of the guide wire extend out from a duodenal papilla into a duodenum; placing a distal end portion of the endoscope in vicinity of the duodenal papilla while keeping the distal end of the guide wire extending out from the duodenal papilla while observing a captured image; pulling the guide wire extending out from the duodenal papilla into a second channel having a raised angle of the treatment tool larger than that of the first channel; and inserting the treatment tool inside the biliary tract via the guide wire.
An ultrasound transducer element includes a plurality of electrostatic capacitance type ultrasound cells each having a lower electrode portion and a membrane including an upper electrode portion that are oriented and disposed via a cavity circular in plan view, and a thickness of the cavity monotonously decreases in a curved manner toward an outer circumferential portion from a center portion of the cavity.
A hand vacuum cleaner may have a first stage cyclone having a first stage cyclone chamber and a second stage cyclone downstream from the first stage cyclone and at least substantially nested in the first stage cyclone. A screen is positioned laterally outwardly from the second stage cyclone and defines a passage positioned between an inner side of the screen and the outer wall of the second stage cyclone. The screen extends axially at least about 70% of a length of the second stage cyclone chamber.
An air-releasing valve for use in a suction apparatus and a suction robot having the air-releasing valve are provided. The air-releasing valve comprises an activation unit and an air-releasing valve retaining base (3). An air-releasing hole (11) in communication with a negative pressure chamber (18) of the suction apparatus is provided on the air-releasing valve retaining base (3). The activation unit is provided on the air-releasing valve retaining base (3) and is movable relative to the air-releasing valve retaining base (3) to open the air-releasing hole (11). A switch (4) is provided on the air-releasing valve retaining base (3). The activation unit opens the air-releasing hole (11) and triggers the switch (4) to shut off a vacuuming apparatus (14) of the suction apparatus simultaneously. The air-releasing valve is capable of rapidly releasing air from the suction apparatus and shutting off the vacuuming apparatus (14) in a timely manner.
A suction apparatus, a glass-wiping device and a run control method thereof. The suction apparatus comprises a suction cup unit (1). The suction cup unit (1) comprises an inner suction cup (11) and an outer suction cup (12). The inner suction cup (11) is arranged on the inside of the outer suction cup (12). A chamber on the inside of the inner suction cup (11) forms an inner negative pressure chamber (13) via vacuum suction. A chamber between the inner and outer suction cups (11 and 12) forms an outer negative pressure chamber (14) via vacuum suction. The outer negative pressure chamber (14) is connected to a vacuum detection unit. The vacuum detection unit comprises a distensible piece (20) and a distension-sensing piece (21). The distensible piece (20) is sealedly connected onto an opening on the top end of the outer negative pressure chamber (14). The distensible piece (20) has arranged thereon the distension-sensing piece (21). The glass-wiping device is provided with the suction apparatus, when in cases of failure of the outer suction cup (12) in the suction apparatus and of failure of the outer negative pressure chamber (14), the glass-wiping device will take measures immediately to prevent an increased number of small protrusions from entering the inner suction cup (11), thus preventing the phenomenon of the glass-wiping device falling off a wall from occurrence.
A chair assembly including a toilet seat, a chair seat lid and a backrest. The toilet seat, the lid and the backrest are connected relative to one another such that they are positionable in alternative chair and toilet-use modes. The lid is behind the generally upright backrest when the assembly is in the toilet-use mode and is on the toilet seat when the assembly is in the chair mode. The assembly can have self-supporting legs whereby it can form a standalone chair remote from the toilet. When in a male urination mode, the toilet seat is lifted and the backrest is in a lifted, generally horizontal position.
A sheet product dispenser for dispensing sheet product from a roll of sheet product is provided. The sheet product dispenser includes a housing defining an interior space configured to receive the roll of sheet product therein, and a roll support positioned within the interior space and configured to rotatably support the roll of sheet product. The housing includes a dispensing gap in communication with the interior space and configured to allow a tail portion of the roll of sheet product to extend therethrough and out of the interior space, and a drainage gap in communication with the interior space and configured to allow a liquid to drain therethrough and out of the interior space. The drainage gap is spaced apart from the dispensing gap and positioned below the dispensing gap. A related method of protecting a roll of sheet product within a sheet product dispenser also is provided.
A personal care article is disclosed having a first compliant personal care composition in a first zone and a second compliant personal care composition in a second zone such that the first and second zones are defined by one or more barriers. Methods for increasing lather are also disclosed herein.
A countertop appliance having a detachable base with rotatable handles for selectively engaging a pan or cooking surface of the appliance. The rotatable handles of the detachable base are rotatable between a locked position in which the pan is secured to the base preventing separation of the pan from the base and a disengaged position where the pan can be lifted off the base. The rotatable handles can also be rotated into a stored position in which the handles are positioned within the detachable base, whereby the detachable base can be placed within the pan to facilitate storage and reduce overall shipping volume.
A garment removal apparatus and method of using the apparatus to remove a garment from the upper body. The garment removal apparatus may include one or more cables and one or more clips attached depending from an attachment mechanism. With one or more clips secured to the upper body garment, the user moves away from attachment mechanism and may progressively remove the garment from the user.
The invention relates to an eating utensil which combines the capabilities of a fork, characterized by function for spearing the food and of a knife characterized by function for cutting the food and can be used by handicapped and people with decreased functional ability of one of their upper limbs. The eating utensil consists of a handle (1) and a head (5) with formed static spearing tines (9) and mounted rotating cutting tines (8′) and (8″). The handle (1) has a cavity in which a semi-automatic reciprocal spring mechanism (2) is inbuilt. In outer circumferential surface of the handle (1) are formed slots (1′) and sliders with ergonomic shape are placed in them for right (3′) or for left (3″) handed use.
A backrest for an office chair. The backrest has a support structure on which a backrest shell element can be fastened. The support structure is formed with two braces that which are interconnected at upper and lower end regions and that are spaced from each other between the upper and lower end regions. At least sections of the braces are movable relative to one another.
A holster system for hair-cutting shears includes a holder and a wearable portion. The holder includes a pocket that can receive hair-cutting shears and a shears-holding portion. The shears holding portion can hold the hair cutting shears on an exterior surface of the holder. The shears-holding portion may include a magnet.
A holster strap that allows for the attachment of a variety of holster types (thread-on, clip-on, paddle, as well as left and right holsters) to a backpack waist belt. The holster strap allows quick access and removal of a holster and includes a base and a strap. The base may be secured to the backpack waist belt and the strap secures the holster to the base. The strap may be stretchable and durable such that it may hold various size holsters with a heavy firearm, camera, or another item. The holster strap allows a holster to be quickly removed from a backpack waist belt and transferred to a belt when the backpack is removed.
The disclosure includes a hammock made of a flexible piece of material whose ends can be gathered into endpoints where the suspension system is attached so that the hammock can be suspended between two points (trees/posts/etc). The hammock is covered with a flexible material (such as mosquito netting/fabric/etc) so that the hammock is enclosed. On one or both sides of the hammock an adapter panel is attached between the canopy and the hammock body.
A foldaway mirror assembly has a support; an arm pivotally connected to the support, a mirror member pivotally connected to the arm, the arm having two portions that are rotatably connected so that the mirror member can be rotated and pivoted, first and second pivot connections connecting the respective support and mirror members to the arm and each comprising a click-stop mechanism for establishing a plurality of firm but movable pivot positions for the arm on the support and for the mirror member on the arm, a non-magnifying mirror on one side of the mirror member, a magnifying mirror on an opposite side of the mirror member, at least one light source mounted to the mirror member for illuminating the mirrors and a power supply in the support and electrically connected to the light source for powering the light source.
A protective cover for an electronic device includes a first hardshell member, a second hardshell member, and a flexible hinge member. The first hardshell member removably attaches to a first portion of the electronic device to protect the first portion of the electronic device. The second hardshell member removably attaches to a second portion of the electronic device to protect the second portion of the electronic device. The flexible hinge member includes a flexible material and is attached to the first hardshell member and the second hardshell member such that the flexible hinge member aligns with a hinge of the electronic device. The flexible hinge member flexes to allow the second portion of the electronic device to remain articulable relative to the first portion of the electronic device when the protective cover is on the electronic device.
A containment device that opens to form a mat or work surface that has a raised lip or edge structure that contains items on the mat or work surface. The containment device closes or converts from the mat configuration to create a sealed bag or sealed flexible container for holding the items inside, where the seal is formed by the lip or edge structure. In some embodiments, the containment device may include a cinch cord that can be used to change from the open mat configuration into the closed bag configuration. In such embodiments, the cinch cord may include a cord lock that may be adjustably deployed to clamp the cinch cord and the lip in a position that maintains the convertible luggage device in a closed bag configuration.
The disclosed technology relates to a safety device for a jewelry item. The safety device includes a length of line having a first end and a second end; a first connector, the first connector being a first crimp having a first loop and a first set of crimping jaws, the first loop being fixedly attached to the first end of the length of line; a second connector, the second connector being a second crimp having a second loop and a second set of crimping jaws, the second loop being fixedly attached to the second end of the length of chain; a first elastic band being fixedly attached to the first set of crimping jaws thereby forming a first elastic loop; and a second elastic band, the second elastic band being fixedly attached to the second set of crimping jaws thereby forming a second elastic loop.
There is provided an article with a slide fastener affixed thereto. Each of a pair of element members has a plurality of single elements made of a synthetic resin and fixedly integrated and connected to at least one flexible connecting string-shaped member at an equal interval. A slider is formed with an element guide path between upper and lower blades. A fastener-attached member forms an opening and closing part of the article. The pair of element members are directly sewn to a first surface of the fastener-attached member by sewing threads. The element members and the fastener-attached member are inserted into the element guide path of the slider.
A zipper head assembly structure includes a pin-shaped assembly. The pin-shaped assembly includes a first pin element and a second pin element. The first pin element includes a first body, a first flange portion, a first mating portion, and a first front portion. The second pin element includes a second body, a second flange portion, a second mating portion, and a second front portion. The first flange portion is projected outwardly from a first left wall of the first body and adjacent to a rear side of the first body. The second flange portion is projected outwardly from a second right wall of the second body and adjacent to a rear side of the second body. The first pin element and the second pin element are detachably connected to each other by matching the first mating portion and the second mating portion.
A hook fastener includes a stem having two lateral edges, a first surface, and a second surface. A cap extends from an upper end of the stem, and the cap includes an upper surface, a first end, a second end, and a pair of overhanging portions. The upper surface of the cap is sloped between the first end and the second end. The first and second ends are at opposite longitudinal ends of the cap, and each overhanging portion extends in a lateral direction from the stem.
Port-injection footwear is provided. In one example, port-injection footwear is provided including a footwear-structure bag encompassing an injected foam. In some examples, the footwear-structure bag may form an integrated footwear component. The port-injection footwear further may include a foam barrier disposed adjacent to the footwear-structure bag to retain the injected foam within the bag during injection. An outsole may be directly coupled to the footwear-structure bag forming a base of the footwear article. In other examples, the port-injection footwear may include a footwear-structure bag having an injection port, an injected foam retained in the footwear-structure bag, where the injected foam was injected through the injection port, and a port cap positioned at the injection port of the footwear-structure bag.
Garments having an evacuation harness that are intended for connection to each other, with each garment having an outer wear unit including at least a torso portion and an evacuation harness that includes a torso strap system connected to the outer wear unit. The garments may include an outer wear pant having a leg strap system. Garments that are similar to each other conveniently may be used in a rescue garment system. Also disclosed are methods of connecting an individual to be rescued to one or more rescuers wearing similar garments.
A swaddle-configured blanket having four edges including a first edge having a first length, a second edge parallel to the first edge having a second length different than the first length, a third edge coupled to the first edge and the second edge, the third edge forming a first corner with the second edge, and a fourth edge coupled to the first edge and the second edge, the fourth edge forming a second corner with the second edge. The first corner and the second corner being configured to tie into a knot.
A portable, personal storage and carrying case for an e-liquid e-cigarette PV in which the case includes: a refillable PV that is removable from the case; an electrical power source for re-charging a rechargeable battery in the PV; a user-replaceable reservoir for holding e-liquid; and an electrical or electronic pump adapted to transfer e-liquid from the reservoir to a chamber in the PV, the pump delivering a pre-defined or variable quantity of e-liquid from the reservoir; and in which the case is configured to automatically fully re-fill the PV with e-liquid and fully charge the PV so that the PV is in a fully re-filled and re-charged state when it is removed from the case.
A coupling unit and method for inserting a support fitted with a hygroscopic pad in a base during the manufacture of a disposable cartridge for an electronic cigarette; are provided: a first seat that accepts the support fitted with the hygroscopic pad; a second seat that accepts the base and can be axially aligned with the first seat; a transfer device that inserts the support fitted with the hygroscopic pad in the base by applying a relative axial movement between the support fitted with the hygroscopic pad and the base; and a suction device, which is coupled to a first end of the base opposite to a second end of the base through which the support fitted with the hygroscopic pad enters, and causes suction that acts inside the base.
The purpose of the present invention is to provide a breakable capsule, which is characterized by having no adhesion between capsules each other, having no over time change of the capsule contents, having excellent heat resistance and moisture resistance, being easily ruptured under the pressure imposed by the fingers, having good cracking feeling, and releasing the content and the present invention relates to a breakable capsule, which comprises a capsule having a content and a capsule shell, wherein the capsule is characterized by having an oily ingredient as a content, having at least a shell-forming material as a capsule shell, and satisfying the following equations (1) and (2), 150<(X)<630 (1) wherein (X) represents crush strength (g)/outer diameter of a capsule (mm), 0.15≤(Y)≤0.53 (2) wherein (Y) represents distance/outer diameter ratio, where the distance represents the distance (mm) that is deformed to reach the maximum load, when the capsule is ruptured over the press under the condition of 22° C., 80% RH.
Methods and articles are provided for reducing the amount of water consumed by a plant over a period of time, sequestering CO2, and producing electricity, where each method includes providing the plant with a composition including at least about 0.1 (wt./wt. or vol./vol.) % CO2 and/or at least about 0.1 wt./wt. % of a composition that generates CO2. An apparatus is also disclosed for providing the plant with a composition including CO2 and/or a composition that generates CO2.
There is provided a method for the removal and control of arthropod infestation comprising the cleaning of surfaces and objects within an interior dwelling space using a high efficiency water extraction device, utilizing water that is heated to a temperature sufficient to kill the pest, and to which is added a cleaning agent comprising a surfactant that imparts a surface tension of between about 15 and about 30 dynes/cm, (a “super wetting agent”); in combination with application of an effective arthropod control composition to surfaces and objects within the interior dwelling spaces, the arthropod control composition comprising an arthropod control agent and a surfactant that imparts a surface tension of below about 30 dynes/cm.
The present invention provides a fungicidal composition useful as an agricultural and horticultural fungicide having remarkably improved controlling effects against plant diseases, and a method for controlling plant diseases using the composition. A fungicidal composition comprising, as active ingredients, (a) 3-(2,3,4-trimethoxy-6-methylbenzoyl)-5-chloro-2-methoxy-4-methylpyridine (pyriofenone) or its salt and (b) at least one fungicide selected from the group consisting of bixafen, fluxapyroxad, penflufen, isopyrazam, fluopyram, ametoctradin, fenpyrazamine and sedaxane, and a method for controlling plant diseases, which comprises applying the fungicidal composition to plants.
A process for making microcapsules may include i) forming a solution of a cross-linker in a liquid; ii) forming a slurry of a surface-modified particulate inorganic material in an aqueous medium; and iii) dispersing the solution of step i) in the slurry of step ii) and causing or allowing the cross-linker to react with the surface-modified particulate inorganic material so as to form a cross-linked microcapsule wall.
The disclosure relates to an activated platelet preservation composition, a method for preserving activated platelet and a preserved activated platelet using the same. Here, the disclosure relates to an activated platelet preservation composition comprising a divalent cation, chloride, vitamin B, a selenium source and a solvent, a kit using the same, a method for preserving an activated platelet, and a preserved activated platelet using the same. According to the disclosure, it is possible to obtain and preserve platelets, which are positive for CD61 and CD62p and negative for PAC-1 among cell markers.
A tackle cool box has a main body and a cooler. The cooler is slidably attached to a bottom side of the main body. The cooler has a pair of chambers, and is slidable to each of a closed position, a first open position, and a second open position. In the closed position, the chambers of the cooler are both disposed between a first side and a second side of the main body. In the first open position, one chamber is at least partly disposed outwardly from the first side and the other chamber is disposed between the first side and the second side of the main body. In the second open position, one chamber is at least partly disposed outwardly from the second side and the other chamber is disposed between the first side and the second side of the main body.
The cotton variety ST 6182GLT is disclosed. The invention relates to seeds, plants, plant cells, plant tissue, harvested products and cotton lint as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of variety ST 6182GLT with other plants. The invention also relates to plants and varieties produced by the method of essential derivation from plants of ST 6182GLT and to plants of ST 6182GLT reproduced by vegetative methods, including but not limited to tissue culture of regenerable cells or tissue from ST 6182GLT.
The present invention relates to cytoplasmic male sterile (CMS) Cichorium plants and especially to cytoplasmic male sterile (CMS) green chicory plants; cytoplasmic male sterile (CMS) radicchio rosso plants; cytoplasmic male sterile (CMS) red leaved chicory plants, cytoplasmic male sterile (CMS) Treviso plants, cytoplasmic male sterile (CMS) white chicory plants, cytoplasmic male sterile (CMS) sugar loaf plants, cytoplasmic male sterile (CMS) Belgian endive plants, cytoplasmic male sterile (CMS) witloof plants, cytoplasmic male sterile (CMS) Catalogna plants, cytoplasmic male sterile (CMS) C. intybus var. foliosum plants, cytoplasmic male sterile (CMS) C. endivia plants and cytoplasmic male sterile (CMS) C. intybus L. var. sativum plants. The present invention further relates to methods for identifying cytoplasmic male sterile (CMS) Cichorium plants and mitochondrial nucleic acid sequences providing cytoplasmic male sterility (CMS) in Cichorium plants.
The present description relates to cryo-sprouts that have been germinated, grown and shipped in the same container. Seeds are placed on a membrane in the container with sufficient water. The container with the seeds is incubated at a pathogen antagonistic temperature during the growth phase. The pathogen antagonistic temperature is preferably between about 35° F. and about 45° F. The cryo-sprouts grown according to these methods have reduced numbers of pathogenic organisms, are greener and have an extended shelf-life.
The invention relates to a laminar body for making greenhouse roofs, comprising at least one laminar layer, which defines at least one main surface of the laminar body and comprises a polymer matrix and nano-particles of titanium dioxide TiO2 in the anatase and/or rutilium form, dispersed in the polymer matrix. The nano-particles have dimensions not greater than 100 nm. The titanium dioxide is present with a concentration in weight of between ′30 and 1500 ppm in relation to the polymer matrix. The invention also relates to a method of greenhouse cultivation and the use of the laminar body according to the invention for making greenhouse roofs. The invention also relates to a greenhouse having a roof comprising at least one laminar body according to the invention and to a masterbatch for making a laminar layer of a laminar body according to the invention.
The invention relates to a hitching device including: a hitched frame mounted onto a tool, such as an agricultural tool; a hitching frame mounted onto a hauling system of a vehicle, such as an agricultural tractor, provided with a power take-off; and transmission means comprising coupling members that are suitable for being moved between a released position and an engaged position and are mounted onto the frames such as to be translatable along a vertical axis (z) and freely rotatable about a so-called “transverse” axis (y). Moreover, a prepositioning means is suitable for keeping, in the released position thereof, both coupling members in a predetermined position along the vertical axis (z) and for enabling, in the engaged position, the displacement of said coupling members, coupled along the vertical axis (z), and tilting of the latter about the transverse axis (y).
An apparatus for disassembling an electronic component from a circuit board includes a base, a controller, a positioning assembly, and a heating and suction assembly. The controller is fixed to the base. The positioning assembly is arranged on the base and coupled to the controller. The positioning assembly is configured to be controlled by the controller to position the circuit board at a first predetermined position. The heating and suction assembly is movably arranged on the base and coupled to the controller. The heating and suction assembly is moved to a second predetermined position to heat the electronic component and moved to a third predetermined position to attract and hold the heated electronic component by suction, whereby the electronic component is disassembled from the circuit board.
Embodiments herein relate to liquid cooling interfaces for computer memory components. An apparatus for cooling a computer memory component may include a support and a cooling tube coupled with the support, where the cooling tube is to be positioned parallel to a computer memory connector to receive the computer memory component, and the cooling tube is to be removably coupled with a memory component heat spreader associated with the computer memory component. In some embodiments, the support may be a liquid manifold. Other embodiments may be described and/or claimed.
Exemplary embodiments of a ventilating system for regulating a property of an electrical equipment cabinet are provided, generally including a duct configured and dimensioned to be mounted with respect to the electrical equipment cabinet. The exemplary ventilating system generally includes a damper mounted with respect to the duct and a sensor mounted with respect to at least one of the electrical equipment cabinet and the duct. The sensor is generally effective to generate signals related to the property. Exemplary methods for regulating a property of an electrical equipment cabinet with a ventilating system are provided, generally including throttling the damper based at least in part upon a sensed property to maintain a substantially zero pressure or temperature environment in the electrical equipment cabinet.
A structured media enclosure door assembly includes a base, a door and a support plate. The base includes a frame that is configured to mount directly to a wall. The door includes a frame and a front panel held by the door frame. The door frame is coupled to the base frame. The support plate has first and second opposite surfaces. The support plate is configured to be selectively coupled to the door frame in: (i) a first position with the support plate first surface facing the front panel and the support plate spaced apart from the front panel a first distance; and (ii) a second position with the support plate second surface facing the front panel and the support plate spaced apart from the front panel a second distance that is less than the first distance.
An electronic control unit according to the present invention includes an electronic control element which includes a printed circuit board that electrically controls respective components of a vehicle, and a heat radiating portion that is provided at one side of the printed circuit board, a housing which accommodates the electronic control element, a connector which connects the electronic control element and the vehicle, a sealing unit which seals a connecting portion between the electronic control element and the connector, and a fixing bracket, and further includes a rivet fastening means in order to fastened the housing and the fixing bracket.
A supporting device includes a modular joint assembly, two fixing members respectively installed on two opposite ends of the modular joint assembly, and a resilient sheet fixed on the outer surface of the modular joint assembly and the fixing members. The modular joint assembly includes a plurality of joints buckled in sequence. Each joint has an arced track groove recessed on a side surface thereof and a buckling portion extended from an opposite side surface thereof. An imaginary datum line is defined by connecting a center of circle of each track groove and is located at one side of the resilient sheet away from the modular joint assembly. When any two buckled joints are rotated with respect to each other, the resilient sheet is compressed and a length of the imaginary datum line is unchanged.
Disclosed is a display device for realizing a transparent image. The display device includes a display panel, a source printed circuit board (PCB) on which a signal line is mounted, a control PCB on which a timing controller is mounted, and a circuit film connected to the display panel at one side of the circuit film and connected to the source PCB at another side. The source PCB and the control PCB are disposed to overlap each other.
A support structure located at a bottom of a ball grid array (BGA) is provided. The support structure includes a printed circuit board (PCB) having first positioning pin holes, an interface plate having second positioning pin holes which correspond to the first positioning pin holes arranged on the PCB, a support film arranged on the PCB and having support portions, and positioning components penetrating the first positioning pin holes and the second positioning pin holes corresponding to the first positioning pin holes to assemble the support film on the PCB and the interface plate.
The invention relates to a composition and a process for the deposition of conductive polymers on dielectric substrates. In particular, the invention relates to a composition for the formation of electrically conductive polymers on the surface of a dielectric substrate, the composition comprising at least one polymerizable monomer which is capable to form a conductive polymer, an emulsifier and an acid, characterized in that the composition comprises at least one metal-ion selected from the group consisting of lithium-ions, sodium-ions, aluminum-ions, beryllium-ions, bismuth-ions, boron-ions, indium-ions and alkyl imidazolium-ions.
A display module includes a display panel which includes a substrate and a periphery circuit. The substrate has a display area and a strip region beside the display area. The substrate is bent with respect to an axis to form a curved shape. The maximum value of the curvature of the display area in a direction perpendicular to the axis is a first curvature. The periphery circuit is disposed on the strip region. The strip region in a direction perpendicular to the axis has a second curvature smaller than the first curvature.
Provide is a bezel-free display device comprising: a flexible substrate comprising an element area including an electronic element and positioned on the upper surface thereof, a terminal area including a terminal electrically connected to the electronic element, and positioned at the rear surface thereof, and a flexible area positioned between the element area and the terminal area and having flexibility; a flexible wire positioned on the flexible area of the flexible substrate, electrically connecting the element and the terminal, and having flexibility; and a display member positioned on the element area of the flexible substrate and electrically connected with the electronic element.
A method is presented for producing light using a liquid media. The method includes: hosting nanoparticles in a liquid media; disposing a pair of electrodes in direct contact with the liquid media; and generating an excitation signal between the electrodes in the pair of electrodes, thereby illuminating a portion of the nanoparticles.
An OLED device according to an example embodiment includes an organic light-emitting element between a lower substrate and an upper substrate. At least a part of a side surface of the upper substrate has a reverse-tapered shape configured to reduce damage to the lower substrate caused by deformation of the upper substrate due to an external impact. Accordingly, reliability issues resulting from a short circuit or burnt lines due to the deformation of the upper substrate may be resolved, improving overall reliability and productivity of an OLED device.
According to some embodiments, a sensor board may be used with a luminaire. The sensor board may include an environment sensor disposed on a first side of the sensor board to function in a first direction and a color sensor disposed on a second side of the sensor board to function in a second direction. The environment sensor may include an adjustable lens assembly. The environment sensor and the color sensor may be oriented 180° apart from each on the sensor board and the first direction may be oriented 180° apart from the second direction.
A linear light-emitting diode (LED)-based solid-state lamp comprises a front-end electric shock detection and control module, an LED driving circuit, and LED arrays. The front-end electric shock detection and control module comprises at least one full-wave rectifier, at least one half-wave rectifier, a constant current sink connected to the at least one half-wave rectifier, a signal extraction unit, a switch control unit, and at least one switch. By sending probing pulses to the constant current sink and checking a detection signal in a mixed direct-current voltage from the at least one full-wave rectifier and the at least one half-wave rectifier in response to the probing pulses, the front-end electric shock detection and control module detects and determines if the linear LED-based solid-state lamp is operated in a normal mode or in an electric shock hazard mode.
The present disclosure relates to a lighting method and a lighting device and belongs to the field of lighting technology. The method includes acquiring environment information about a lighting device, where the environment information indicates environment features about the lighting device; acquiring a target light parameter corresponding to the environment information about the lighting device based on a predetermined correspondence between environment information and light parameters, where the target light parameter includes at least one of light color, color temperature and light-emitting power; and controlling the lighting device to emit light corresponding to the target light parameter based on the target light parameter.
A high intensity, ultra-short LED pulsing driver circuit is developed for use with a system designed to perform real-time time-resolved, transient recording of fluorescence. Details of the timing circuitry used to pulse the LED and to provide synchronized PMT gating and ADC trigger pulses are also developed. The LED pulses are intended for fluorophores with lifetimes on the order of about 1.6 ns or longer and gating is used to maintain the detector off or partially off during excitation, thereby maximizing the available detector gain without saturation of the detector by the excitation light.
The present disclosure relates to a wireless communication device, a high speed, high capacity dedicated mobile network system, and a method for transmitting information streams across a molecular network to end users without using IEEE 802 LAN, ATM or TCP/IP connection-oriented standards and protocols.
A first device in accordance with an example is placed in a predefined mode in response to removing a near field communication (NFC) tag from an NFC component of the first device. A request is received from a second device to establish a connection with the first device based on data stored on the NFC tag. The first device establishes the connection with the second device and executes the predefined mode.
There is provided a method for determining priorities of services. The method may be performed by a user equipment (UE) and comprise: determining, by the UE, whether to prioritize a group communication (GC) service over a non-GC service, wherein the GC service is received through a multimedia broadcast multicast service (MBMS) bearer or through a unicast bearer; and transmitting, from the UE and to a network, an uplink message including an indicator for indicating that the GC service is prioritized over the non-GS service.
The disclosure provides a method in a wireless network for link adaptation. The method comprises transmitting a first grant message indicating grant resources for a first link path to a first user equipment, UE; monitoring the grant resources for the first link path to determine whether data is transmitted from the first UE on the first link path; and inhibiting link adaptation for the grant resources for the first link path if no data is transmitted from the first UE on the first link path. The disclosure also provides a network node and a user equipment for link adaptation.
Communication systems, such as the long term evolution (LTE) advanced (LTE-A) of the third generation partnership project (3 GPP) may benefit from various enhancements. These enhancements can include LTE time division duplex (TDD) enhancements for traffic adaptation and uplink (UL)-downlink (DL) interference management. A method can include determining whether a first cell, in a network including the first cell and a second cell, autonomously selects a time division duplex uplink-downlink configuration. The method can also include sending an authority indicator to a base station of the first cell regarding a determination of whether the first cell is to autonomously select the configuration.
Mobile network services are performed in a mobile data network in a way that is transparent to most of the existing equipment in the mobile data network. The mobile data network includes a radio access network and a core network. An edge caching mechanism is provided within a basestation to perform caching of data at the edge of the mobile data network. The edge caching mechanism analyzes historical usage data that indicates historical accesses to the basestation. Data patterns in the historical usage data may be used to define cache load criteria and to optionally define cache flush criteria. This architecture allows caching of data at the edge of a mobile data network within the infrastructure of an existing mobile data network.
Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus includes a processing system configured to generate a frame comprising a preamble, a first header, and a second header, wherein the preamble and the first header are configured to be decoded by a first device operating according to a first protocol, the second header not being configured to be decoded by the first device, and wherein the preamble, the first header, and the second header are configured to be decoded by a second device operating according to a second protocol; and an interface configured to output the frame for transmission.
A wireless communication device for packet communication is provided. Based on an interfering wave level that is stored in carrier sense table, the number of empty slots for every threshold of interfering wave is obtained, and, in a case where the number of empty slots for the threshold exceeds a predetermined value, a slave station is notified the number of empty slots.
Various aspects described herein relate to allocating resources in wireless communications. A subset of resource block (RB) groups configured for a legacy wireless communication technology having a first transmission time interval (TTI) can be determined, where the first TTI is based on one subframe in duration, and where each RB group in the subset of RB groups includes one or more RBs. A resource allocation for a low latency communication technology having a second TTI, the second TTI being less than one subframe in duration, can be determined where the resource allocation including one or more low latency RBs in the subset of RB groups. Data can be communicated over resources in the one or more low latency RBs, the low latency RBs being based on the second TTI, and the resources being associated with the resource allocation.
A method in a user equipment (121) for determining a transport block size is provided. The transport block size is used by the user equipment (121) in receiving downlink data transmissions from a network node (110) on an enhanced Control CHannel, eCCH. The user equipment (121) and the network node (110) are comprised in a telecommunications system (100). The user equipment (121) has access to a table of predetermined transport block sizes. The user equipment (121) may calculate an indicator NPRB based on the total number of PRBs allocated to the downlink data transmission NPRB, and based on an PRB offset value OPRB or a PRB adjustment factor APRB. Then, the user equipment (121) may determine the transport block size from the table of predetermined transport block sizes based on at least the calculated indicator NPRB. A user equipment, a method in network node and a network node are also provided.
A method and an apparatus for utilizing multiple carriers are disclosed. A wireless transmit/receive unit (WTRU) capable of receiving on a single downlink carrier at a time may tune the receiver to one downlink carrier and switch the downlink carrier in accordance with a configured pattern. The WTRU may switch the carrier from an anchor carrier to a non-anchor carrier at a high speed shared control channel (HS-SCCH) sub-frame boundary, and switches back at an end of a subsequent high speed physical downlink shared channel (HS-PDSCH) subframe. The WTRU may switch the carrier at an HS-PDSCH sub-frame boundary. A WTRU capable of receiving on multiple downlink carriers simultaneously may tune the receiver to an anchor carrier and a supplementary carrier, and switch the supplementary carrier to another carrier based on a carrier switching order. The carrier switching order may be received via an HS-SCCH or via layer 2 signaling.
A wireless communication device (UE) conducting wireless communications according to a specified radio access technology (RAT) in a first communications band belonging to a first network may be required to switch to a different communications band due to network restrictions and/or radio link failure. The UE may therefore perform a system scan identifying other communications bands associated with the first RAT and available at the present location of the UE. The UE may identify whether the other communications bands include preferred communications bands belonging to the first network, support a service associated with the wireless communications of the UE, and have an energy level higher than a specified threshold. If one or more preferred communications bands are present, the UE may switch communications from the first communications band to one of the preferred communications bands, even if it doesn't have the highest energy level among all the other communications bands.
It is an object to provide a wireless characteristic display apparatus that displays wireless characteristics at a location where a multihop wireless mesh network is to be created, the apparatus being able to reduce discrepancies between displayed characteristics and actual characteristics and being able to reduce complexity in processing to obtain wireless characteristics and in the configuration of the apparatus.The wireless characteristic display apparatus includes a first determination unit that performs interpolation processing on the basis of reception qualities obtained by measuring a wireless transmission signal from the same wireless node at a plurality of locations, and determines a reception quality at a location other than the measurement locations; a second determination unit that determines a pair of wireless nodes capable of bidirectional inter-node communication on the basis of the reception qualities obtained by the first determination unit and information on installation locations of wireless nodes; a third determination unit that determines a second communication range corresponding to the sum of communication ranges of the pair of wireless nodes obtained by the second determination unit; and a display unit that displays installation locations of the wireless nodes constituting the pair of wireless nodes obtained by the second determination unit and the second communication range obtained by the third determination unit.
The operation of base stations in a wireless network whose areas of coverage do not overlap are synchronized by taking timing values from mobile units that travel from one area of coverage to another. A base station receiving a timing value from a mobile unit entering its area of coverage adapts its timing value and that of any mobile units in its coverage area, including the newly-arrived mobile unit, to a become a value intermediate between its existing timing value and that indicated by the mobile unit. The use of an intermediate value instability in the system that might result from an inability of the base stations to communicate directly with each other in real time.
A method and apparatus for configuring Power Headroom Report (PHR) of a User Equipment (UE) efficiently in a mobile communication system supporting carrier aggregation are provided. The method includes generating a header including a LCID for identifying extended PHR and L indicating a length of the extended PHR, and inserting Power Headrooms (PHs) of multiple activated carriers into the extended PHR of one of the carriers.
Techniques for wireless component monitoring are described herein. The techniques may include entering a low power mode to associate a radio frequency identification (RFID) component with a patient monitoring device within a first range. The techniques also include entering a high power mode wherein the patient monitoring device is to detect the RFID component within a second range of the patient monitoring device, wherein the second range is larger than the first range.
In some examples, a method includes performing a channel sounding operation to estimate dynamic channel characteristics between an Access Point (AP) and a wireless device; determining, based on the estimated dynamic channel characteristics, whether a first transmit configuration without polarization diversity at a maximum allowable transmit power level for non-orthogonal polarity will provide a better Quality of Experience (QoE) than a second transmit configuration with polarization diversity above the maximum allowable transmit power level for non-orthogonal polarity; and transmitting a transmit stream with the second transmit configuration when it is determined that it will provide a better QoE than the first transmit configuration.
A remote antenna system is provided. The remote antenna system comprises an antenna controller circuit and a remote antenna circuit coupled to the antenna controller circuit by a cable. The remote antenna system further comprises a bidirectional data signal path for carrying transmit and received data signals between the antenna controller circuit and the remote antenna circuit; and a control path for carrying control information between the antenna controller circuit and the remote antenna circuit. The control path is a bidirectional control path. The control path comprises a transmit circuit comprising an input to receive control information and configured to convert the control information into a series of pulses; and a receive circuit comprising a comparator circuit configure to receive the series of pulses and reconstruct them to the control signal.
The present invention addresses a method, apparatus and computer program product for enabling PMM/ECM IDLE buffering within software defined network architecture. Thereby, it is indicated that a user plane idle state is active, a buffer for a user plane idle procedure is allocated in a user plane node, and a communications protocol controller is notified about received packets at the user plane node, wherein only the first received packet is to be indicated to the communications protocol controller while any subsequent received packet is appended to the allocated buffer.
Embodiments of the present disclosure provide a method for receiving D2D discovery information and an apparatus. The method for receiving D2D discovery information includes: sending, by an upper layer of a radio resource control RRC layer of a D2D communication device, a first instruction to a physical layer of the D2D communication device, where the first instruction is used to instruct the physical layer to switch from a D2D sleep state to a D2D listening state; and receiving, by the physical layer of the D2D communication device, the first instruction and switching from the D2D sleep state to the D2D listening state according to the first instruction, to listen to D2D discovery information. This reduces power consumption of the D2D communication device and prolongs a standby time of the D2D communication device.
An access point supports communication in a femto cell of a cellular communication network. The access point comprises transceiver circuitry arranged to enable communication with at least one wireless communication unit located within the femto cell, and a signal processing logic module comprising an access point controller interface logic module arranged to enable communication between the access point and an access point controller. The signal processing logic module further comprises a gateway logic module arranged to provide an interface between the at least one wireless communication unit located within the femto cell and a packet data network.
The systems and methods disclosed herein provide for the development of a wireless communication network that monitors a physical environment. The network components include relay nodes, parent modules and end user devices distributed throughout the physical environment. Such components are programmed, controlled and monitored via cloud computing while the components are also accessed for use by end users via mobile platforms. The systems and methods disclosed herein provides for the distribution of hyperlinked-content to end user devices.
This disclosure relates to broadcast information block assistance for a wireless device. The wireless device may obtain a first plurality of broadcast information blocks from a first base station. The wireless device may receive a second plurality of broadcast information blocks associated with the first base station from a source other than the first base station. The wireless device may determine if the second plurality of broadcast information blocks match the first plurality of broadcast information blocks based on version information specified in the first plurality of broadcast information blocks. When the broadcast information blocks match, the wireless device may use the first and second pluralities of broadcast information blocks to perform communication with the first base station without obtaining the second plurality of information blocks from the first base station.
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may be a UE. The UE may transmit a message that includes a relay status of the UE. The relay status may indicate whether the UE intends to function as a relay node between a base station and at least one D2D destination. The UE may receive a DCI message based on the relay status of the UE. The DCI message may indicate resources allocated to the UE based on the relay status of the UE. The UE may transmit data on the resources allocated to the UE based on the relay status of the UE.
A method and apparatus for establishing a session of a cellular system in a wireless communication system is provided. According to embodiments of the present invention, the establishment of the session of the cellular system may be triggered by a network when a session of a Wi-Fi system already exists. By using the session of the cellular system and the session of the Wi-Fi system, simultaneous transmission through the cellular system and the Wi-Fi system can be achieved.
A radio communication device includes a wireless transmission circuit and a control processing circuit adapted to interact with the wireless transmission circuit to transmit and receive wireless signals, the control processing circuit configured to perform a Media Access Control process including selecting a packet aggregation size based on a channel quality metric of a wireless channel and a payload transmission efficiency metric of the wireless channel, electing one or more packets based on the packet aggregation size, and generating a single Media Access Control aggregated header and encapsulating the one or more packets with the single Media Access Control aggregated header, the wireless transmission circuit configured to transmit the one or more packets and the single Media Access Control aggregated header via the wireless channel.
A satellite communication system may be configured to establish multiple different tunnels between a first satellite modem and a second satellite modem in accordance with a protocol. The first satellite modem may receive a packet via a tunnel established in accordance with a different protocol, determine an endpoint identifier corresponding to the tunnel based on information from one or more headers included in the packet, identify one of the multiple different tunnels that corresponds to the tunnel, generate a corresponding packet omitting at least a portion of the information from the one or more headers and comprising at least a portion of data included in a payload of the packet and an information block comprising a tunnel index corresponding to the identified one of the multiple different tunnels, and transmit the corresponding packet to the second satellite modem via the identified one of the multiple different tunnels.
A method for controlling data throughput of a public user at a subscriber access point, including determining if the public user has established a connection at the subscriber access point, measuring the physical layer data rate of the public user retrieving a maximum channel usage time limit and limiting an amount of data transferred on a per unit of time basis responsive to the measured physical data rate and the maximum channel usage time limit.
A communication system controls Quality-of-Service (QoS) using Internet Protocol (IP) address ports. A network controller identifies an IP port range and a QoS level for a user application. The network controller transfers port/QoS data that indicates the IP port range and the QoS level for the user application. A wireless relay and a network gateway receive the port/QoS data. The wireless relay wirelessly exchanges user data with User Equipment (UE) using an IP port in the IP port range. The wireless relay exchanges the user data with the network gateway using the QoS level associated with the IP port range responsive to the use of the IP port by the UE. The network gateway exchanges the user data using the QoS level associated with the IP port range responsive to the use of the IP port by the UE.
Methods and systems for reducing inbound request traffic in a wireless network. One method includes receiving, via a network interface of a controller, a registration request from a communication device. The method further includes determining, with an electronic processor of the controller and in response to receiving the registration request, predicted communication device configuration data. The electronic processor determines the predicted communication device configuration data as a function of a plurality of previously stored communication device configuration data states associated with the communication device. The method further includes transmitting, with the electronic processor via the network interface, a message to the communication device. The message includes at least a portion of the predicted communication device configuration data.
An apparatus for reducing latency in a User Equipment (UE), comprising a processor configured to push back a packet that is transmitted to but not acknowledged by a base station, from a Radio Link Control (RLC) layer; and trigger a Tracking Area Update (TAU) procedure based on the pushed back packet; and a radio frequency interface configured to transmit or receive the packet with the base station.
A method of sending a handover failure report in a wireless communication system is provided. The method is performed by user equipment (UE) and can include detecting a handover failure, and sending, to a base station (BS), the handover failure report including a first Reference Signal Received Quality (RSRQ) measurement result for a first cell and a first wideband indicator for the first RSRQ measurement result after the handover failure is detected, wherein the first RSRQ measurement result is a result of performing RSRQ measurement, and the first wideband indicator indicates whether a wide bandwidth is used when performing RSRQ measurement.
The disclosure relates to technology for managing signal distribution and lab resources in design validation environments that replicate a type of communication signal a consumer can experience on a wireless provider's network. For example, the validation environment will enable engineers to test VoLTE in an LTE for various smart phone designs and other network-based signals from various hardware combinations and suppliers. Additionally, various embodiments of the present technology provide for an automation framework that allows for efficient management of signal distribution, resource allocation, scheduling, and more.
A local switching method for user plane data includes: after being triggered, a level 1 data node judging whether a direct tunnel can be established for a source user equipment and a target user equipment, and if so, establishing a direct tunnel between a source level 2 data node and a target level 2 data node for the source user equipment and the target user equipment; after receiving an IP data packet transmitted by the source user equipment to the target user equipment, the source level 2 data node forwarding the IP data packet to the target level 2 data node through the direct tunnel between the source level 2 data node and the target level 2 data node, so that the target level 2 data node forwards the IP data packet to the target user equipment.
There is provided adaptive resource sharing between at least two radio access technologies (RATs) in a cell. A network node acquires cell load measurements for at least two RATs in a cell. The network node acquires traffic information for the cell. The network node acquires an indicator of 5 interruption delay parameters for user equipment in the cell. The network node determines filter coefficients based on the acquired traffic information and the acquired indicator. The network node applies a filter with the filter coefficients to the cell load measurements. The network node performs resource sharing between the at least two RATs based on the filtered cell load 10 measurements.
An electronic device and theme applying method thereof are provided. The electronic device includes a user authentication module configured to acquire user authentication information, a display configured to output a page, a memory configured to store at least one theme data applicable to the page, and a processor configured to apply theme data, corresponding to the acquired user authentication information, to the output page.
Various exemplary embodiments relate to a method, network node, and non-transitory machine-readable storage medium including one or more of the following: instructions for obtaining, by a session establishment device, a subscriber record associated with a subscriber based on the session establishment device receiving a request message for establishment of a session with respect to a user device, wherein the request message includes a received subscriber identifier associated with the subscriber and a received equipment identifier associated with the user device, and wherein the subscriber record stores a stored subscriber identifier and a stored equipment identifier; instructions for comparing the received equipment identifier to the stored equipment identifier to determine whether the user equipment is associated with the subscriber in the subscriber record; and instructions for conditionally rejecting establishment of the session based on the determination of whether the user equipment is associated with the subscriber in the subscriber record.
An MTM-based short message service security system and a method thereof are provided. A hardware security module according to the present invention includes an access control unit configured to verify the integrity of a SMS application and a request from the SMS application, and verify whether the SMS application has a permission for the request; a key management unit configured to store and manage a public key and a private key of the terminal, and an encryption key shared with a server configured to transmit a security message between the server and the terminal; and a security message processing unit configured to convert the security message based on a preset security policy when the security message is received from the server, and return the converted message to the SMS application.
Methods and apparatus supporting multiple concurrent service contexts sharing a single connectivity context are disclosed. A device may initiate a radio link with a network node and establish a connectivity context with the network node over the radio link using a connectivity logical context of the device. The network node may receive, authenticate, and authorize context establishment requests. A first service context with a first service management entity may be established over the radio link using a first logical context of the device, where the first logical context is distinct from the connectivity logical context. Multiple service connections using multiple service contexts based on multiple logical contexts of the device may share the connectivity context and may be established over the radio link.
Systems and methods of wireless communication are described. One method includes transmitting an indication of a time window for determining a range for wireless communication between a first device and a second device. The method further includes determining the range between the first device and the second device at the indicated time window.
Locational tracking aids emergency management plans. Occupants of a building or campus are determined based on presence or detection of wireless devices. When an emergency occurs, the occupants may move to safety based on the current locations of their wireless devices.
Encoding and decoding schemes at an encoding device/transmitter and decoder device/receiver, respectively, for use in communicating the state of a system. In an example method carried out by an encoding device, state information x(k), which represents the current state of a monitored system, is measured. The encoding device calculates a state update parameter, based on: a message power constraint P; the covariance N of measurement noise associated with the channel over which encoded state information is to be transmitted; and the norm of the signal vector [s(k), x(k)], where s(k) is a stored state information parameter. The encoding device then calculates a message signal z(k)=G(k)*(x(k)−s(k)), which may then be transmitted to a remote decoder device, and calculates an updated version of the stored information s(k+1)=A*(s(k)+F(k)*z(k)). The encoding device replaces the stored state information s(k) with s(k+1).
A Short Message Service (SMS) reading method and device are provided. The SMS reading method includes receiving a reading request for reading an SMS from a third party application, and when the SMS is determined to be an SMS including predetermined information, the predetermined information in the SMS may be hidden according to a security process for hiding the predetermined information. The processed SMS may be fed back to the third party application.
[Problem] To provide a wireless communication network system and a method for determining a representative sensor device for appropriately selecting, from a plurality of sensor devices, a device with which a server communicates. [Solution] A server (120) transmits a group representative determination request including a list of parameters for determining a representative sensor device. Sensor devices (140a-z) transmit, upon receiving the parameter list, a device parameter indicating the parameter of each of the sensor devices corresponding to the parameter list. The representative sensor device is determined on the basis of the device parameters transmitted by the sensor devices (140a-z). The representative sensor device transmits, to the server (120), measurement result information generated by the sensor device itself and measurement result information generated by the other sensor devices.
An apparatus of a communication network performs processing (10) for a group message to be sent to a plurality of devices. The group message includes an application layer content and a group identification identifying the plurality of devices. The apparatus performs communication (20) for sending the group message to the plurality of devices by using a protocol for enabling sending the group message in broadcast data to the plurality of devices. The protocol may enable sending the group message in multimedia broadcast/multicast service data or cell broadcast service data to the plurality of devices.
The present disclosure relates to a system for monitoring occupancy of one or more pre-defined areas. The system has a scanning subsystem for wirelessly scanning a pre-defined area, using a short range wireless communications protocol, to detect a presence of one or more wireless personal electronic devices (PEDs) associated with one or more individuals present in the pre-defined area. Each of the PEDs also use the short range wireless communications protocol to radiate wireless signals that are detected by the scanning subsystem. A data analysis/processing subsystem analyzes data generated by the scanning subsystem relating to detected PEDs in the pre-defined area. A notification subsystem analyzes the information relating to an occupancy level of the pre-defined area.
A tracking device can securely communicate with a secondary device by generating a hash value based on the identity of the tracking device. If the secondary device cannot resolve the hash value, the hash value can be provided to a tracking server, such as a cloud server, for resolving the hash value. Upon resolving the hash value, the tracking server can store a location of the tracking device in association with the identity of the tracking device. To preserve power, the secondary device can activate location-detection functionality (such as a GPS receive) only in response to the detection of movement of the tracking device, can obtain location information, and can de-activate the location-detection functionality upon providing the location information to the tracking server. The tracking server can associate one or both of a previous location and the current location information based on movement of the tracking device.
Methods and apparatus, including computer program products, are provided for advertising location information. In one aspect there is provided a method. The method may include sending, by a wireless device including a radio transceiver, an information indicating an availability of one or more services at the wireless device; changing, when a connection is established to the radio transceiver at the wireless device, the information to include at least one different location where the one or more indicated services may be accessed; and sending the changed information including the at least one different location. Related apparatus, systems, methods, and articles are also described.
Methods, apparatus, systems and articles of manufacture to provide an update via a satellite connection are disclosed. An example method includes scanning a local area network to identify a device in communication with the local area network. A hardware address of the device is determined. The hardware address of the device is compared against a whitelist of hardware addresses included in an update schedule. In response to detecting that the hardware address of the device is included in the whitelist of hardware addresses, an update identified in the update schedule is received via a broadcast distribution system, is recorded, and is transmitted to the device.
Spherical microphone arrays capture a three-dimensional sound field (P(Ωc, t)) for generating an Ambisonics representation (Anm(t)), where the pressure distribution on the surface of the sphere is sampled by the capsules of the array. The impact of the microphones on the captured sound field is removed using the inverse microphone transfer function. The equalization of the transfer function of the microphone array is a big problem because the reciprocal of the transfer function causes high gains for small values in the transfer function and these small values are affected by transducer noise. The invention minimizes that noise by using a Wiener filter processing in the frequency domain, which processing is automatically controlled per wave number by the signal-to-noise ratio of the microphone array.
A control apparatus comprises a first obtaining unit configured to obtain a result of sound collection performed by a sound collection apparatus that collects a measurement signal as a sound, the measurement signal being output from an output apparatus; a detection unit configured to detect a position of the output apparatus or the sound collection apparatus relative to a measurement-subject person; and a second obtaining unit configured to obtain a head-related transfer function of the measurement-subject person based on the result of sound collection obtained by the first obtaining unit and the position detected by the detection unit.
An audio file playing method and an apparatus are disclosed and are used to: when an audio file is played, expand a quantity of audio channel signals in the audio file and improve a playing effect of the audio file. The method is as follows: after the audio file is obtained, determining, whether the audio file includes an audio channel signal that can be played by the mobile device; if the audio file includes the audio channel signal that can be played by the mobile device, directly playing the audio channel signal. Therefore, when multiple mobile devices are used to play a same audio file, the mobile devices can avoid performing a same operation, thereby increasing a quantity of audio channels of the audio file, expanding a sound field of the audio file, and improving a playing effect of the audio file.
An apparatus for generating four or more audio output signals has a panning gain determiner and a signal processor. The panning gain determiner is configured to determine a proper subset from a set of five or more loudspeaker positions, so that the proper subset has four or more of the five or more loudspeaker positions. Moreover, the panning gain determiner is configured to determine the proper subset depending on a panning position and on the five or more loudspeaker positions, and to determine a panning gain for each of the four or more audio output signals by determining the panning gain depending on the panning position and on the four or more loudspeaker positions of the proper subset. The signal processor is configured to generate each of the four or more audio output signals depending on the panning gain for the audio output signal and on an audio input signal.
The present invention provides a method of manufacturing a receiver-in-canal assembly. The method comprises the steps of providing a receiver housing configured to be positioned in or at the ear canal of a user, and further being configured to comprise a receiver configured to output sound; providing a connector housing configured to be connected to a behind-the-ear part of a hearing aid; and providing an elongated tube configured for transfer of a signal from the connector housing to the receiver housing. In a further step the receiver housing and the connector housing are attached to opposite ends of the elongated tube. Subsequently, the tube is permanently deformed after attachment of the receiver housing and the connector housing to the tube by exposing it to heat in a first predetermined treatment period.
Disclosed herein is a headset, comprising a headband-like component, one or two external ear pieces, and one or more external speakers. The headband-like component comprises a first end and a second end. Each ear piece of the one or two external ear pieces covers one ear of a user and is connected to one of the first end and second end of the headband-like component. Each external speaker of the one or more external speakers has a predetermined design and each external speaker is mounted on the headband-like component.
A portable auxiliary unit for coupling with a mobile audio player is disclosed. The auxiliary unit provides both auxiliary power input and auxiliary audio output for the player, as well as a protective casing in the form of a receiving cup open on a top side. The receiving cup provides access to inputs and outputs on the audio player accessible by cabling from the auxiliary unit installed when an access panel is opened. The auxiliary unit has an integral rechargeable battery pack and a speaker assembly connectable to the audio player via the cables.
An audio device includes an audio amplifier configured to receive an input signal and generate a differential output signal. A first signal combiner circuit is configured to generate a time-convolution signal of an analog current signal and an analog voltage signal. The analog current signal corresponds to a current at the differential output signal, and the analog voltage signal corresponds to a voltage across the differential output signal. A second signal combiner circuit is configured to subtract the generated time-convolution signal from the input signal.
A backward compatible system and method for using 4P audio jack in an electronic device to provide power and signal to headset with active noise cancellation (ANC) as well as accessories that require an external power are disclosed. The method involves automatically deciding at the electronic device accessory type after accessory insertion detected and choosing proper accessory communication mode based at least on the decided accessory type and accessory input signal. The accessory communication mode may be an accessory power mode or an accessory microphone mode.
Detachable wearable electronic eyeglasses and head mounted gear with a plurality of electronic functions and interchangeable electronic function, and a wearable computer with optimal weight distribution and stretchable arms.
Systems and methods for enabling a handheld device to easily collect, analyze, transmit, and act on wireless information transmitted from various instruments on hydrocarbon production and pipeline skids. The handheld device preferentially presents available data streams based on which instruments are closest to the handheld device, as determined using available information such as signal strength or GPS or other location-based services.
A video content type seamless switching system and method for synchronizing and displaying multiple types of video content in a single platform, such as a single video player, application, or other content player. Illustrative video content type switching may be between 2D and 360 degree formats coordinated by a switching controller. The switching controller may be configured to operate with television displays and associated control components, such as cable boxes, through implementation of the video content switching methods.
Disclosed are various embodiments for providing interactive electronic commerce functionality via graphical overlays on live streaming video. An indication is received that an item is featured or discussed in a live video stream. The live video stream is sent to a client. Data encoding a selectable graphical overlay is sent to the client in response to the indication. The selectable graphical overlay is configured to be rendered by the client relative to the live video stream. A selection of the selectable graphical overlay is configured to perform an interactive function relative to the item.
A receiving apparatus is provided. The receiving apparatus includes: a receiver configured to receive an input signal including a transmission frame which includes a bootstrap, a preamble, and a payload; a bootstrap detector configured to detect the bootstrap based on a correlation between the input signal and a reference signal which is pre-stored; and a signal processor configured to signal-process the preamble based on the detected bootstrap and signal-process the payload based on the signal-processed preamble, and the bootstrap detector is configured to determine the correlation by quantizing at least one of the input signal and the reference signal and then multiplexing the input signal and the reference signal at least one of which is quantized. Accordingly, an area occupied by hardware and cost can be reduced and loss of performance can be minimized.
A multimedia signal processing system allows a user to store selected programs while simultaneously watching or reviewing another. The system includes an input section and an output section. Across all configurations, the output section remains substantially the same, while the input section varies according to the signal type and the source. The system receives a digital stream and simultaneously processes the digital stream for display and stores the digital stream on at least one storage device. The system further simultaneously processes a previously recorded digital stream for display while processing the digital stream for display.
Various mechanisms presented in this disclosure provide for dynamically adjusting the exhibition of subtitles. In one example, check-points are introduced into the subtitle file format that, once achieved by a multimedia player, provoke the rescheduling of the moment in which the texts contained in the subtitle file will be exhibited.
Disclosed herein are systems and methods for causing a stunt switcher to run a bug-removal digital-video effect (DVE). In one aspect, a method involves selecting a first log-entry from a traffic log, wherein the first log-entry corresponds to a bug-removal DVE stored in the stunt switcher; selecting a second log-entry from the traffic log, wherein the second log-entry corresponds to a show-segment video-component (VC) and a start time; causing the VC to start being channeled through the stunt switcher proximate the start time; making a determination that a threshold time-period remains in a show portion of the VC; and responsive to making the determination that the threshold time-period remains in the show portion of the VC, causing the stunt switcher to run the stored bug-removal DVE, thereby removing any bug overlayed on the VC as a remainder of the VC is being channeled through the stunt switcher.
A method and apparatus for managing a subscription to a plurality of content providers and the irretrievably referring users to an interface of the content provider to directly consume media programs provided by the content providers is disclosed. The method irretrievably passes users to content providers so that the user can view media programs from those content providers using the content provider's application, while providing a central source for users to locate media programs available from a plurality of content providers and to subscribe for access to such media programs. This construct permits content providers to retain control over the user viewing experience and to encourage the user to view further media programs from the same content provider.
Systems and methods for a media content delivery service. A media content provider includes a data store for storing and serving media content to subscribers. The media content provider continually records and or otherwise stores video and audio content from around the world. Stored content will generally correspond to a large number of other media content providers, such as cable television operators, Internet based media content providers, television networks, and so on. Subscribers to the media provider interact with the media content provider via hardware and/or software mechanisms either provided by the media content provider or conforming to specifications of the media content provider. Based on these subscriber's subscriptions to the other content providers, the subscribers will have viewing, listening, or application execution privileges for content maintained in the data store. Content of a subscriber corresponding to multiple video content providers is maintained and served by a single provider.
A time series data encoding apparatus includes a time series data encoding means 11 for compressing and encoding time series data thereby to generate encoded bit streams, a virtual buffer 12 for calculating a transition of the amount of data accumulated in a buffer in a virtual decoder defined according to an encoding system, a buffer usage analyzing means 13 for analyzing the transition of the amount of accumulated data thereby to reset parameters indicating a size of the buffer and the amount of accumulated data in the buffer at a predetermined time, and a multiplexing means 14 for multiplexing the encoded bit streams generated by the time series data encoding means 11 and the parameters reset by the buffer usage analyzing means 13.
A method and apparatus for entropy coding and decoding a transformation block are provided. The method of entropy coding a transformation block includes: determining, according to a certain scan order, a location of a last significant transformation coefficient having a non-zero value from among transformation coefficients included in a transformation block having a certain size; and coding information about the determined location of the last significant transformation coefficient by using a horizontal axis direction location of the last significant transformation coefficient and a vertical axis direction location in the transformation block of the last significant transformation coefficient.
Methods and apparatus for facilitating processing a reference frame to produce an output frame. Motion vector data for a block of reference frame pels estimates the displacement of the reference frame pels from corresponding pels in a prior input frame. Comparison metrics are produced for a pel of the reference frame with respect to that pel and a plurality of neighboring reference frame pels. A first comparison metric is based on a comparison with corresponding pels of a prior output frame that corresponds to the prior input frame as previously processed. A second comparison metric is based on a comparison with corresponding pels of a motion compensated prior output frame derived from applying motion vector data to the pels of the prior output frame. A pel of the output frame that corresponds to the reference frame pel is determined using the first and second comparison metrics.
Examples of methods and apparatuses for estimating bit counts of a bitstream are described herein. An entropy encoder may include a bitstream encoding module and a bit count estimation module. The bitstream encoding module may be configured to encode a plurality of syntax elements according to a first encoding technique. The bit count estimation module may be configured to provide estimated bit counts for encoding the plurality of syntax elements according to a second encoding technique. In at least one embodiment, the bitstream encoding module may be further configured to encode the plurality of syntax elements based on the estimated bit counts.
The invention provides a video codec. In one embodiment, the video codec is coupled to an outer memory storing a reference frame, and comprises an interface circuit, an in-chip memory, a motion estimation circuit, and a controller. The interface circuit obtains in-chip data from the reference frame stored in the outer memory. The in-chip memory stores the in-chip data. The motion estimation circuit retrieves search window data from the in-chip data with a search window, and performs a motion estimation process on a current macroblock according to the search-window data. The controller shifts the location of the search window when the current macroblock is shifted, marks a macroblock shifted out from the search window as an empty macroblock, and controls the interface circuit to obtain an updated macroblock for replacing the empty macroblock in the in-chip memory from the reference frame stored in the outer memory.
A field programmable object array integrated circuit has video data compression capability. The integrated circuit comprises an array of programmable objects and a video compression co-processor communicatively coupled to the array of objects. The video compression co-processor comprises a set of search engines and a subpixel engine. The subpixel engine can interpolate subpixels from integer pixels and shift the integer pixels by a predetermined number of subpixels. The search engines can perform a plurality of sum of absolute differences (SAD) computations between search window pixels and macroblock pixels to locate the best SAD value using either integer pixels and/or the interpolated subpixels.
A method of decoding a current block encoded using intra-prediction includes determining prediction modes for coding blocks neighboring the current block. The method generates prediction values for edge samples of the decoded block from intra-prediction reference samples of the neighboring coding blocks by applying an intra-prediction process to the intra-prediction encoded current block if a number of the neighboring coding blocks determined to one of use intra-block copy prediction mode and palette mode is greater than or equal to a predetermined threshold. Alternatively the method generates the prediction values for the edge samples of the decoded block from intra-prediction reference samples of the neighboring coding blocks by applying a filter, preferably an intra-boundary filter, to reference samples of the neighboring blocks. The current block is then decoded based on the prediction values.
The present invention is a system and method for video coding. The video coding system may involve a structural similarity-based divisive normalization approach, wherein the frame prediction residual of the current frame may be transformed to form a set of coefficients and a divisive normalization mechanism may be utilized to normalize each coefficient. The normalization factor may be designed to reflect or approximate the normalization factor in a structural similarity definition. The Lagrange parameter for RDO for divisive normalization coefficients may be determined by both the quantization step and a prior distribution function of the coefficients. The present invention may generally be utilized to improve the perceptual quality of decoded video without increasing data rate, or to reduce the data rate of compressed video stream without sacrificing the perceived quality of decoded video. The present invention has shown to significantly improve the coding efficiency of MPEG4/H.264 AVC and HEVC coding schemes. The present invention may be utilized to create video codes compatible with prior art and state-of-the-art video coding standards such as MPEG4/H.264 AVC and HEVC. The present invention may also be utilized to create video codecs incompatible with existing standards, so as to further improve the coding gain.
An electrically controlled spectacle includes a spectacle frame and optoelectronic lenses housed in the frame. The lenses include a left lens and a right lens, each of the optoelectrical lenses having a plurality of states, wherein the state of the left lens is independent of the state of the right lens. The electrically controlled spectacle also includes a control unit housed in the frame, the control unit being adapted to control the state of each of the lenses independently.
A three dimensional [3D] video signal (41) is provided for transferring to a 3D destination device (50). Depth metadata is determined indicative of depths occurring in the 3D video data, which depth metadata includes a near value indicative of depths of video data nearest to a user. The 3D video signal, which comprises the 3D video data, now also includes the depth metadata. The 3D destination device (50) is enabled to retrieve the depth metadata, to provide auxiliary data, and to position the auxiliary data at an auxiliary depth in dependence of the retrieved metadata for displaying the auxiliary data in combination with the 3D video data such that obscuring the auxiliary data by said nearest video data, and/or disturbing effects at the boundary of the auxiliary data, is avoided.
A method for distributing video in a display system equipped with at least one camera. The video is distributed among multiple display zones, which are movable with respect to each other. The method includes acquiring optically, with the camera, a calibration image of a display zone of a display-enabled electronic device. The method includes computing, based on the calibration image, a coordinate transform responsive to dimensions, position, and orientation of the display zone relative to the camera, the coordinate transform being usable to effect video rendering on the display zone. The method includes transmitting to the display-enabled electronic device one or more of the coordinate transform and video rendered for display on the display zone based on the coordinate transform.
An optical inspector with feedback capability includes an optical device that captures an image when a sample is within the field of view of the optical device, a storage device that stores the captured image, a processor that determines a quality characteristic value of the sample based on the captured image, and an interface circuit that outputs inspection data or a command based on the quality characteristic value. A method of controlling a sample processing line is also disclosed, the method including capturing an image of a sample traversing the processing line, determining a quality characteristic of the sample based at least in part on the captured image, and causing the operation of a device included in the processing line to be adjusted based at least in part on the quality characteristic value. In one example, the optical inspector is an in-flight 3D inspector located in the processing line.
A method for operating a set-top-box that supports 3D video content is disclosed. The method involves transmitting video content from an HDMI port of the set-top-box to a display device at a first resolution. The method also involves, in response to a change in the HDMI_Video_Format field or in the 3D_Structure field of an HDMI Vendor Specific InfoFrame, automatically switching to transmitting video content from the HDMI port of the set-top-box at a second resolution. The method also involves, after the switch to the second resolution, automatically switching back to transmitting video content from the HDMI port of the set-top-box at the first resolution in order to trigger a re-sync operation at the display device.
An apparatus for processing a source image to generate a target image is provided. The target image includes a plurality of target pictures. The apparatus includes a first image processing circuit and a second image processing circuit. The first image processing circuit separates the source image into a first image including a first part of the source image and a second image including a second part of the source image. The second image processing circuit processes the first image to obtain a plurality of target first pictures according to a first setting, process the second image to obtain a plurality of target second pictures according to a second setting, and combine each of the target first pictures with a corresponding one of the target second pictures to obtain the plurality of target pictures. A method for processing a source image to generate a target image is also provided.
A method for processing a request includes receiving a query request sent by a first terminal. The query request is configured to request to query camera data collected by a camera, the camera data including at least one of image data or video data. The method further includes judging whether an account corresponding to the first terminal has a permission to obtain the camera data according to the query request and pushing a prompt message to a second terminal bound to the camera if the account corresponding to the first terminal does not have the permission. The prompt message is configured to prompt that the camera data is accessed abnormally.
System, method, and computer product embodiments for proving an orientation adjustment for casting visual content on a display device are described. A computing device selects an orientation adjustment to be used in transcoding a video having a frame and assigned an orientation. The computing device requests a transcoder within the computing device to transcode the frame based on the orientation adjustment to generate a transcoded frame. The transcoded frame is converted into a format comparable to a reference frame representing the frame that is corrected transcoded to the assigned orientation. Then, the computing device compares the converted frame with the reference frame to determine that the frame is transcoded correctly to the assigned orientation. If the frame is transcoded correctly, the computing device uses the selected orientation adjustment when transcoding visual content for casting or streaming on a display device in an orientation matching that of the visual content.
There are several types of plenoptic devices and camera arrays available on the market, and all these light field acquisition devices have their proprietary file format. However, there is no standard supporting the acquisition and transmission of multi-dimensional information. It is interesting to obtain information related to a correspondence between pixels of a sensor of said optical acquisition system and an object space of said optical acquisition system. Indeed, knowing which portion of the object space of an optical acquisition system a pixel belonging to the sensor of said optical acquisition system is sensing enables the improvement of signal processing operations. The notion of pixel beam, which represents a volume occupied by a set of rays of light in an object space of an optical system of a camera along with a compact format for storing such information is thus introduce.
To provide an apparatus and method for executing signal conversion processing according to environmental light in a content unit, a scene unit, or a frame unit to generate an output image. Provided is an image display control apparatus including a data processing unit that controls image signals to be output to a display unit, the data processing unit being configured to execute a display control application supporting a content to be displayed on the display unit to generate output image signals. The data processing unit inputs sensor detection signals from a sensor that acquires environmental light information in a periphery of the display unit, and applies the sensor detection signals and generates output image signals by carrying out signal conversion processing in which different signal conversion algorithms are applied to original input image signals of the content in a content unit, a unit of scenes configuring a content, or a frame unit.
A display apparatus includes a signal receiver configured to receive a broadcast signal, a signal processor configured to process the received broadcast signal, a display configured to display an image based on the processed broadcast signal, a user input receiver configured to receive a user input, a storage, and a controller. The controller is configured to control the storage to store information about an external device being mapped to a channel among a plurality of channels in accordance with the user input, display the information about the external device corresponding to the mapped channel, and control the external device via the mapped channel. Thus, a user may easily register the external device with a channel simply by placing an input device, such as a remote controller or the like, in proximity to the external device while viewing a broadcast.
An embodiment circuit includes a first source follower configured to be controlled by a voltage at a first node, a photodiode controllably coupled to the first node, and a bias transistor configured to be controlled by a bias voltage. The bias transistor has a first terminal coupled to an output of the first source follower. The circuit additionally includes a storage node controllably coupled to the output of the first source follower, and an amplifier controllably coupled between the storage node and an output line. Also included in the circuit is a controllable switching element configured to couple a second terminal of the bias transistor to a supply voltage in response to a pixel operating in a first mode, and to couple the second terminal of the bias transistor to the output line in response to the pixel operating in a second mode.
A solid-state image sensor includes a first pixel for detecting focus, a second pixel disposed adjacent to the first pixel, a third pixel disposed adjacent to the first pixel, and a first light reflecting member disposed between the first pixel and the third pixel. The first pixel includes a plurality of photoelectric conversion units. When a second light reflecting member is disposed between the first pixel and the second pixel, the width in a predetermined direction of the first light reflecting member is larger than the width in a predetermined direction of the second light reflecting member.
In a digital camera having an imaging array including a plurality of pixels arranged in rows and columns, the digital camera having a mechanical shutter, a method for performing neutral density filtering of images captured by the imaging array, the method comprising opening the mechanical shutter, operating each row in the array by resetting all of the pixel sensors in the row, starting exposure for all of the pixel sensors in the row, closing the mechanical shutter, reading pixel values from the pixels in the array after the mechanical shutter has closed at a time unrelated to a time at which any pixel-select signal was de-asserted, and wherein the interval of time between starting exposure for all of the pixel sensors in the row and closing the mechanical shutter for each row a function of a neutral density filter function applied to an image to be captured.
A photoelectric conversion device includes a unit pixel cell including a first photoelectric conversion unit and a second photoelectric conversion unit, a first charge holding unit, a second charge holding unit, and a third charge holding unit, a first transfer unit provided between the first photoelectric conversion unit and the first charge holding unit, a second transfer unit provided between the first photoelectric conversion unit and the third charge holding unit, a third transfer unit provided between the second photoelectric conversion unit and the second charge holding unit, and a fourth transfer unit provided between the second photoelectric conversion unit and the third charge holding unit, wherein the number of all photoelectric conversion units connected to the first to third charge holding units is smaller than three as the total number of the first to third charge holding units.
The present invention relates to a mobile terminal which includes a camera and a touch screen and can output an image captured by the camera on the touch screen, and a control method of the mobile terminal. The mobile terminal includes a camera, a sensor, a memory, a touch screen and a controller configured to cause the touch screen to display a first image received via the camera, cause the memory to temporarily store the first image displayed on the touch screen, generate a second image comprising a conflation of at least part of the first image and a plurality of consecutive images sequentially received via the camera in response to sensing by the sensor of first movement of the mobile terminal about a subject included in the first image, and cause the memory to store the second image.
A portable device adapted to enable its user to manually adjust the focus and photometry locations during photography and a method for taking images with the device is disclosed. A GUI for indicating the focus or photometry location is provided on the screen so that the user can manually move the GUI on the screen with a keypad or a touch panel. In this manner, a desired object is taken at the focus or photometry location.
A method and a system are disclosed for detecting a depth of an object illuminated by at least one first light pulse. Detection of light reflected from the object illuminated by the at least one first light pulse by a first row of pixels of 2D pixel array is enabled for a first predetermined period of time in which the first row of pixels forms an epipolar line of a scanning line of a first light pulse. Enabling of the detection by the first row of pixels for the first predetermined period of time occurs a second predetermined period of time after a beginning of a pulse cycle T of the at least one first light pulse. Detection signals are generated corresponding to the detected light reflected from the object, and the generated detection signals are used to determine a depth of the object.
A multi-aperture camera system includes a first aperture introducing an RGB optical signal, a second aperture distinguished from the first aperture and introducing an optical signal, which is different from the RGB optical signal in wavelength, an image sensor processing the RGB optical signal, which is introduced through the first aperture, and obtaining a first image to an object and configured to process an optical signal, which is introduced through the second aperture and is different from the RGB optical signal in wavelength, and obtaining a second image for the object, and a distance determining part using a disparity between the first image and the second image and determining a distance between the image sensor and the object. The first aperture and the second aperture are formed on a unitary optical system to have different centers each other.
A camera module includes a lens carrier that houses a lens, electrical components of optical path modifiers positioned on the lens carrier, an image sensor, and a controller that is to generate commands for operating the optical path modifiers. A printed circuit assembly positioned on the lens carrier is electrically coupled to suspension wires. The printed circuit assembly includes a printed circuit that has installed thereon a serial bus communications interface circuit that is to receive the commands from the controller through one of the suspension wires, and a translation circuit that is to translate the commands into control signals that are to operate or drive the optical path modifiers via the electrical components and according to the commands, respectively. Other embodiments are also described.
A vision system for a vehicle includes a camera having an imaging array having multiple columns of photosensing elements and multiple rows of photosensing elements, with the columns of photosensing elements being generally vertically orientated and the rows of photosensing elements being generally horizontally orientated relative to ground. The multiple rows of photosensing elements comprising top rows, middle rows and bottom rows. When the vehicle is moving, top row brightness values at top rows, middle row brightness values at middle rows, and bottom row brightness values at bottom rows are determined by processing of captured image data by a processor. Contrast of middle row brightness values compared to bottom row brightness values or top row brightness values is determined and, based on determined contrast of middle row brightness values compared to bottom row brightness values or top row brightness values, an at least partial blockage of the camera is detected.
A sample is irradiated with terahertz light from a light source, so that an image (G1) is generated by capturing an image of a region (R1) including a point (S) of the sample, and an image (G2) is generated by capturing an image of a region (R2) including the point (S) and separated from the region (R1) by a distance (L). A single image (V) is generated by applying a predetermined binary operation to the images (G1) and (G2).
The dither mask generation method includes: a process of setting a nozzle relative ejection rate which is a control target of the nozzle ejection rate and stipulates a relative using ratio of the individual nozzles; a process of setting a nozzle pattern indicating correspondence relation between individual pixels of the dither mask and the nozzles in charge of recording at respective pixel positions; a process of setting an upper limit to the nozzle ejection rates of the individual nozzles for each raster in a main scanning direction, regarding at least some thresholds; and a process of setting the thresholds to the pixels of the dither mask based on the nozzle relative ejection rate, the nozzle pattern and a limitation by the upper limit.
An image reading apparatus according to an embodiment includes an image reading unit that generates reference data by reading a reference surface and generates image data by reading a sheet. A reference plate includes the reference surface for generating the reference data for shading correction of the image reading unit and a background surface for background of a sheet to be read to generate the image data. A control unit controls the positions of the image reading unit and the reference plate to be at a first position relative to each other when the reference data is to be generated and at a second position relative to each other when the image data is to be generated. The second position is different from the first position. A shading correction unit performs the shading correction in the image reading unit based on the generated reference data.
The present disclosure discloses an operation panel for an imaging device and an imaging device thereof. The operation panel comprises: a panel body hinged to a connector through a pin shaft; a positioning system comprising a first ratchet wheel and a backstop, wherein the first ratchet wheel is sleeved on the pin shaft and coupled to the panel body, the backstop is arranged on the connector and configured to clamp the first ratchet wheel when the first ratchet wheel rotates reversely so as to position the first ratchet wheel, and the backstop is coupled to the connector and slides at least in a direction parallel to an axial direction of the pin shaft; and a driving system coupled to the backstop and configured to drive the backstop to slide at least in the direction parallel to the axial direction of the pin shaft.
An image reading device includes: a scanner configured to read an image formed on a sheet of paper; a first background member configured to reflect light emitted from the scanner; a colorimeter configured to take a color measurement of the image; a second background member configured to reflect light emitted from the colorimeter; a guide member configured to guide the sheet of paper passing between the colorimeter and the second background member; and a regulating member configured to regulate movement of the sheet of paper, wherein the regulating member includes: a first member including a rolling member; a second member including a rolling member; and a pressing member configured to press the first member and the second member against the guide member, and the pressing member is disposed in a position offset from axes of the first member and the second member.
The voltage monitoring circuit includes a first multiplexer, a controller, a resistor-network circuit and a first comparison circuit. The first multiplexer receives a plurality of first subject voltages. The controller controls the first multiplexer to output one of the plurality of first subject voltages and generates a testing signal including a plurality of electric potentials. The controller is configured to output the plurality of electric potentials switching according to a switch command. The resistor-network circuit is configured to sequentially generate a plurality of first reference voltages according to switches of the plurality of potentials. The first comparison circuit is configured to sequentially compare each of the plurality of first reference voltages to the first subject voltage for sequentially outputting a plurality of first comparing results and sending the plurality of first comparing results to the controller so that a voltage value of the first subject voltage is determined.
An apparatus for connecting a mobile device to a vehicle-based network includes a USB or similar accessory connector enclosed in a protective housing. The connector housing may include a Bluetooth or similar wireless connector for establishing a wireless link between the mobile device and the vehicle-based network via the USB port. The connector housing may include a hinged panel allowing access to the USB connector while open, and securing the USB connector to a USB port of the mobile device while closed. The connector housing may include a flexible impact absorber for isolating the connector from shocks or vibrations conducted by the vehicle mount by which the mobile device is mounted to a dashboard or interior surface of the vehicle.
Systems, methods, and computer-readable mediums for managing a subset of user contacts on a telecommunications device are provided. In one embodiment, a software application executed by a processor of a telecommunications device determines at least two contact groups from a subset of contacts accessible by a telecommunications device. The software application executed by the processor of the telecommunications device also generates a contact display including a representation of at least a portion of the first or second contact groups and a divider display object. The divider display object partitions the first contact group from the second contact group and is positioned adjacent to at least one contact from the first or second contact groups presented in the contact display.
A mobile device shade apparatus includes a case defining a pocket and at least one panel configured to travel in and out of the pocket to transition between a stowed state and a deployed state, wherein in the deployed state that at least one panel extends from and is rotatable with respect to an edge of the case. The apparatus also includes a coupler configured to couple the case to a mobile device, such as a cell phone or tablet, as examples.
Techniques are described for mounting a display and/or display cover to a housing of a display device, such as a mobile phone. In an embodiment, the housing and display cover include chamfered edges at complementary angles to allow for an “edge-to-edge” display. The display cover and housing are affixed to each other at the chamfered edges using curable liquid adhesive.
A first communication device receives, from a second communication device, a trigger frame. The first communication device generates a single-user (SU) physical layer (PHY) protocol data unit that includes a PHY protocol payload, wherein the PHY protocol payload include information other than information that acknowledges a previous transmission from the second communication device. In response to the trigger frame, the first communication device transmits the SU PHY protocol data unit to the second communication device, such that the SU PHY protocol data unit is transmitted prior to the first communication device transmitting any other PHY protocol data unit after receiving the trigger frame.
A method of transmitting data for use at a data processing system and network interface device, the data processing system being coupled to a network by the network interface device, the method comprising: forming a message template in accordance with a predetermined set of network protocols, the message template including at least in part one or more protocol headers; forming an application layer message in one or more parts; updating the message template with the parts of the application layer message; processing the message template in accordance with the predetermined set of network protocols so as to complete the protocol headers; and causing the network interface device to transmit the completed message over the network.
One embodiment provides a system in a first node that facilitates efficient packet forwarding. During operation, the system stores, in a storage device in a first node, a static dictionary comprising a mapping between a type and length (TL) string and a byte-aligned compressed replacement string. The system encodes the byte-aligned compressed replacement string based on an encoding technique to generate a bit-aligned encoded replacement string and stores a mapping between the encoded replacement string and the TL string in an encoded dictionary. If the system identifies the TL string in a packet, the system replaces the TL string with the encoded replacement string and transmits the packet to a second node storing the encoded dictionary in a local storage device, thereby facilitating bit-aligned compression of a TL string.
A method and apparatus for encoding feedback signal is provided. The method includes: encoding feedback signals of three carriers to output a bit sequence; and transmitting the bit sequence on a High Speed-Dedicated Physical Control Channel (HS-DPCCH). The encoding the feedback signals of the three carriers may specifically include: mapping the feedback signals of the three carriers into a codeword, in which the codeword can be selected from a codebook, and codewords in the codebook satisfy a particular code distance relationship. The method for jointly encoding feedback signals of three carriers in a Ternary Cell (TC) mode is provided. Feedback signals are transmitted over a single code channel. Therefore, power overhead is reduced, and system performance is improved.
I/O bandwidth reduction using storage-level common page information is implemented by a storage server, in response to receiving a request from a client for a page stored at a first virtual address, determining that the first virtual address maps to a page that is a duplicate of a page stored at a second virtual address or that the first and second virtual addresses map to a deduplicated page within a storage system, and transmitting metadata to the client mapping the first virtual address to a second virtual address that also maps to the deduplicated page. For one embodiment, the metadata is transmitted in anticipation of a request for the redundant/deduplicated page via the second virtual address. For an alternate embodiment, the metadata is sent in response to a determination that a page that maps to the second virtual address was previously sent to the client.
Universal serial bus (USB) mass storage devices may be redirected to a server to create USB virtual mass storage devices. For characteristics of the redirected device to be propagated to other users (accessing the redirected device via the virtual device) it is necessary to alter the Mode Sense data. In one embodiment, certain users may be given only read-only access to the redirected device. In another embodiment only some of the redirected devices are write-protected. By saving characteristics of a redirected device in the server registry or active directory, the USB virtual bus driver may impose, for example, write-protection on one or more devices connected by one or more users.
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
The present invention discloses a method and a server for allocating game resources, which belongs to the field of network technology. The method includes: receiving a game participation request including game subzone information sent by a user; when the user enters a game subzone identified by the game subzone information, assigning the user to a waiting queue corresponding to the user in the game subzone in accordance with a predetermined condition; and when the user is successfully assigned to the waiting queue, selecting participants to play in the same group with the user from waiting queues other than the waiting queue of the user, and allocating game resources for the user and the selected participants. The present technical solution can effectively reduce occurrence of the game participants' cheating.
Features are disclosed for generating bundles of content items and proactively providing the bundles to client devices. The bundles may be provided to client devices in response to requests for the content page that references the content items in the bundle, or in response to a request for a content page hosted by the same domain as the content items in the bundle. A browser module executing on the client device can extract the referenced content items in the bundle and cache them in a local content cache at the client device prior to the client device receiving and processing a requested content page. As a result, the browser module may have access to cached versions of referenced content items when processing the requested content page even if the referenced content items were not present when the requested content page was requested.
A near end network optimizer receives, from a client device, a request for a network resource. Responsive to determining that a version of the network resource is stored in the near end network optimizer, a request for the network resource is transmitted to a far end network optimizer along with a version identifier that identifies that version. The near end network optimizer receives, from the far end network optimizer, a response that includes a differences file that specifies the difference(s) between the version of the network resource stored in the near end network optimizer with a most current version of the network resource. The response does not include the entire network resource. The near end network optimizer applies the specified difference(s) to the version that it has stored to generate an updated version of the network resource, and transmits the updated version of the network resource to the client device.
A media routing server is described. The media routing server may be configured to receive media information from a source computing system. The media routing server may be configured to scale the media information based on characteristics of one or more destination computing systems. Each scaled media information is unique to the characteristics of each destination computing system. The media information may comprise a plurality of objects. Priority information and sequencing information may be assigned to the objects by the media routing server. The media routing server may be configured to transmit the scaled media information to each destination computing system based on at least the priority information and the sequencing information.
Embodiments of computer-implemented methods and systems for activity-based recommendations are described. One example embodiment includes receiving data indicating historical activities of a user community, the historical activities including historical activities of the target user, selecting a reference group of users from the user community based on analysis of the historical activities of the target user, receiving generally current time activities of the reference group of users, the generally current time activities including those activities that have occurred within a defined time window, and recommending items to the target user based on the generally current time activities of the reference group of users.
In some examples, a network data center comprises a cloud-based services exchange point comprising a network, the cloud-based services exchange point operated by a cloud exchange provider that operates the network data center; and a programmable network platform comprising at least one programmable processor configured to receive a service request that specifies a plurality of cloud services provided by respective cloud service provider networks operated by respective cloud service providers, wherein the service request further specifies a topology for the plurality of cloud services; and provision, responsive to the service request, the cloud-based services exchange point to forward service traffic for the plurality of cloud services according to the topology for the plurality of cloud services.
A service implemented at a first isolated virtual network of a provider network is added to a database of privately-accessible services. Configuration changes that enable network packets to flow between the first isolated virtual network and a second isolated virtual network without utilizing a network address accessible from the public Internet are implemented. Service requests originating at the second isolated virtual network are transmitted to the first isolated virtual network via private pathways of the provider network. Metrics corresponding to service requests directed from the second isolated network to the service are collected and provided to the respective owners of one or both isolated virtual networks.
Features are disclosed for synchronizing information across various devices, and using the synchronized information during subsequent content interactions. Devices may receive and/or store information, such as cookies or other account-level information, in connection with content interactions, such as content page retrieval, application execution, and the like. Information that is not device-specific can be synchronized across multiple devices, thus providing access to the information on any of the devices regardless of which device originally received or stored the information.
Embodiments for enforced registry of cookies through a theme template in a computing network by at least a portion of a processor. A theme template associated with an application may be downloaded. Cookie registration information may be obtained from a registry such that the registry enables an enforcement proxy downloaded with the theme template to enforce compliance with the cookie registration information for each cookie requesting access to the application.
In accordance with embodiments disclosed herein, there are provided methods, systems, and apparatuses for implementing a session table framework including, for example, receiving a request at a host organization from a client device, in which such a request specifies an application available via the host organization; generating a user session unique to the client device in a memory of the host organization; creating a user session data table within the user session; processing the request via the application specified by the request on behalf of the client device; updating the user session data table based on the processing of the request; and transmitting a response to the client device responsive to the request.
Sensor modules are triggered to start and stop the measurement approximately synchronously by sending a broadcast message. Information on the timeline of local clocks is also collected by local counters, and any relative differences in the local clocks, local sample clocks or local time stamps are rectified afterwards by means of the collected timeline information.
Aspects of the present invention relate to guaranteeing delivery of replication messages in distributed storage systems. A request to perform an operation may be received. A first replication message corresponding to the request may be created, where the first replication message comprises instructions to replicate the result of the operation to one or more target storages. The replication message may be inserted in a message queue with a delayed visibility. The operation may be performed, where a result of the operation is persisted in a source storage in a data store. Upon determining that the result was successfully persisted in the source storage, a second replication message may be created, where the second replication message comprises instructions to replicate the result of the operation to the one or more target storages. The second replication message may be inserted in the message queue with an immediate visibility.
A universal environment extender is disclosed. The universal environment extender comprises a smart device; and a main control utility running on the smart device. Then the main control utility allows the extender as a receiver to operate in a mode that allows the extender to explore and reverse-explore the source content/applications and to extend the display environment from another smart device as a transmitter.
A method of sharing browsing on a web page displayed in a window of a first web browser executed in a first terminal, with at least one second web browser executed in a second terminal. The method comprising: the second browser obtaining (S23) a video stream that is being played back in the first terminal, said stream including the display data of the web page; playing back (S24) the video stream in a playback zone included in a window of the second browser; on detecting (S25) at least one action triggered by a user of the second terminal and applied to at least one graphics element displayed within the play back zone, obtaining (S26, S27) information about the location of the action by evaluating the position of the graphics element relative to a reference frame associated with the display zone of the web page in the window of the first browser; transmitting (S28) a message to the first browser, which message includes an action type associated with the detected action together with the information about the location of the action; and applying (S29) the action to the web page (WP1) in the window of the first web browser as a function of the content of the message.
An adaptive video streaming stabilization system includes a computer network comprising a data source; a video player; and a session controller connected between the data source and an adaptive streaming stabilizer. The session controller is configured to use in parallel a variable number of streams in order to maximize download throughput from the data source to the video player. The adaptive streaming stabilizer is connected between the video player and the session controller.
A centralized distribution server includes a converter for embedding content data into a digital delivery stream and a transmitter for transmitting the stream to at least one of the subscriber terminals via a forward network channel. The terminal includes a receiving component for receiving the stream from the centralized server and an interface component for enabling access to the stream and/or the content data embedded therein by a subscriber. The terminal includes a first component for generating a first acknowledgement upon receipt of the stream by the receiving means, and a second component for generating a second acknowledgement upon access of the stream and/or the content data embedded therein by the user. The acknowledgements are transmitted to the centralized distribution server via a return network channel. The centralized distribution server includes a feedback management module for receiving the two acknowledgements transmitted from the terminal to the centralized distribution server.
Social network information may be shared across online service providers. Thus, one online service provider M that maintains a membership separate from a second online service provider N may nevertheless use the social network maintained by the second online service provider N to tailor content and/or services based on such social network information.
One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
A communication control device and method that determine whether non-standard communication with a plurality of communications devices via a network is possible. The communication control device and method receive a communication request from a communication device, select as a communication partner another communication device that is specified by the communication device requesting communication, and prepares to implement one of a plurality of types of non-standard communication if such communication is possible with the communication device. If the non-standard communication is possible, the communication control device and method establish a communication session between the specified communication partner and the communication device. However, when the non-standard communication is not possible, the device and method cease communication with the communication device.
The present invention provides an over-the-top intermediary application for delivering video assistance services. The invention brokers and coordinates all messaging between user and video assistant multimedia applications/platforms, as well as backend resource allocation infrastructure services. By encapsulating different protocol messages from disparate multimedia clients/vendors and backend infrastructure services into a common standard-based messaging protocol, the present invention is able to provide video assistance services regardless of which multimedia client is implemented by the user or video assistant and is able to readily implement new, emerging multimedia clients and backed infrastructure services in a plugin-like fashion. In addition, the video session broker of the present invention streamlines call workflow, maintains the presence of all user/video assistant endpoints, coordinates video session ignition requests and maintains messaging transport between users, video assistants and backend infrastructure resources.
A communication apparatus is disclosed. A home appliance includes a driving unit to drive a component of the home appliance, a controller configured to control the driving unit, a communication unit configured to provide network setup related information to an access point apparatus, to receive network related information from the access point apparatus, to access the access point apparatus after receiving the network related information, and to provide, to a server, after accessing the access point apparatus, product related information for product registration, and a memory configured to store the received network related information. Accordingly, it is possible to conveniently perform product registration of the home appliance.
Techniques for establishing a trusted cloud service are provided. Packages are created for services that include certificates, configuration information, trust information, and images for deploying instances of the services. The packages can be used to deploy the services in trusted environments and authenticated to deploy in sub environments of un-trusted environments. The sub environments are trusted by the trusted environments. Also, clouds are prospected for purposes of identifying desirable clouds and creating the packages for deployment.
A method, non-transitory computer readable medium and apparatus for processing a request from a server of a machine-to-machine service provider are provided. For example, the method receives the request from the server of the machine-to-machine service provider to communicate with a machine-to-machine device, determines whether to authorize the request based upon a policy in a privacy database, and enables communications between the server of the machine-to-machine service provider and the machine-to-machine device if the request is authorized based upon the policy.
A security management system may be remotely deployed (e.g., using a cloud-based architecture) to add security to an enterprise network. For example, the security management system may scan assets within the enterprise network for vulnerabilities and may receive data chunks from these scans. The security management system may also receive data chunks from other sources, and, as a result, the system may handle data chunks having many different formats and attributes. When the security management system tries to associate data chunks to assets, there may not be a globally unique identifier that is applicable for all received data chunks. Provided in the present disclosure are exemplary techniques for tracking assets across a network using an asset correlation engine that can flexibly match data chunks to assets based on the attribute or attributes that are available within the data chunks.
Apparatus and method for disrupting cyber attacks. In accordance with some embodiments, the apparatus includes a network accessible device having a processor and memory, and a security system associated with the network accessible device. The security system has a security controller, a front end and a decoy environment operationally isolated from the memory of the network accessible device. The security controller is adapted to, responsive to receipt of a payload from an outside source potentially having a malicious component from an attacking party, apply a security operation to the payload comprising at least a selected one of an anti-viral scan, a blacklisting scan or a whitelisting scan. The security controller is further adapted to load the received payload into a memory of the decoy environment and detonate the loaded payload a plurality of times in succession.
A device may detect an attack. The device may receive, from a client device, a request for a resource. The device may determine, based on detecting the attack, a computationally expensive problem to be provided to the client device, where the computationally expensive problem requires a computation by the client device to solve the computationally expensive problem. The device may instruct the client device to provide a solution to the computationally expensive problem. The device may receive, from the client device, the solution to the computationally expensive problem. The device may selectively provide the client device with access to the resource based on the solution.
Some embodiments provide an origin whose content is distributed by a third party content distributor control over invoking attack protections from the third party content distributor. The origin independently monitors requests and messaging the content distributor passes to the origin as a result of the content distributor needing to retrieve content from the origin before redistribution or because requested content is dynamic or uncacheable. Upon detection of an attack, the origin signals the content distributor to perform one of several attack protections on its behalf. In this manner, the origin leverages the content distributor distributed platform architecture to shield itself from attack. Based on the origin signaling, the content distributor rate limits, blocks, redirects, or performs other attack protections to reduce the load on the origin server.
A system, method, and computer program product are provided for a database associating a plurality of device vulnerabilities to which computing devices can be subject with a plurality of remediation techniques that collectively remediate the plurality of device vulnerabilities. Each of the device vulnerabilities is associated with at least one remediation technique. Each remediation technique associated with a particular device vulnerability remediates that particular vulnerability. Further, each remediation technique has a remediation type are selected from the type group consisting of patch, policy setting, and configuration option. Still yet, a first one of the device vulnerabilities is associated with at least two alternative remediation techniques.
Systems, methods, and devices of the various aspects enable identification of anomalous application behavior. A computing device processor may detect network communication activity of an application on the computing device. The processor may identify one or more device states of the computing device, and one or more categories of the application. The processor may determine whether the application is behaving anomalously based on a correlation of the detected network communication activity of the application, the identified one or more device states of the computing device, and the identified one or more categories of the application.
Techniques for notification of reassembly-free file scanning are described herein. According to one embodiment, a first request for accessing a document provided by a remote node is received from a client. In response to the first request, it is determined whether a second request previously for accessing the document of the remote node indicates that the requested document from the remote node contains offensive data. If the requested document contains offensive data, a message is returned to the client, without accessing the requested document of the remote node, indicating that the requested document is not delivered to the client.
Methods for managing access to protected resources within a computing environment and detecting anomalies related to access control events are described. An access control system may acquire a request for access to a protected resource, identify a username associated with the request, acquire contextual information associated with the request for access (e.g., a time of day associated with a location of a device making the request), acquire a baseline set of rules for the username, detect a deviation from the baseline set of rules based on the contextual information, acquire additional authentication information in response to detecting the deviation, authorize access to the protected resource based on the additional authentication information, generate a record of the request for access including the contextual information, and update the baseline set of rules if an intrusion to the access control system has not been detected within a threshold period of time.
An apparatus and method to authorize Application Programming Interface (API) or method level access in system and application services are provided. The method includes receiving a request for access to a service from another service or an application via an interface accessible by the other service or the application, and determining whether to authorize the request based at least in part on a specified policy.
Systems and methods are provided for persistent cross-application mobile device identification. A mobile device may have a plurality of sandboxes in memory containing applications. The mobile device may have a shared storage which may accessible by applications from different sandboxes. A storage location identifier may be used to access information in shared storage. A universal device identifier may be stored in the shared storage to identify the mobile device and may be accessible by multiple applications and updates to applications. The universal device identifier may be used to track the mobile device for advertising, fraud detection, reputation tracking, or other purposes.
Systems and methods for providing access to secure information are disclosed. In one aspect, a computer-implemented method for providing access to secure information comprises receiving a first one-time password (OTP) from a computing device, and verifying whether the first OTP is valid. The method also comprises, if the first OTP is valid, performing the steps of generating a second OTP for accessing the secure information, and transmitting the second OTP to the computing device. In another aspect, a computer-implemented method for providing access to secure information comprises generating a first one-time password (OTP), and transmitting the first OTP to an OTP device. The method also comprises, in response to the first OTP, receiving a second OTP from the OTP device, and sending the second OTP to a system that controls access to the secure information, wherein the first OTP is different from the second OTP.
Mechanisms and techniques for customized user validation. A login attempt is received from a remote electronic device with one or more computing devices that provide access to one or more resources. The login attempt is analyzed to determine a profile from a plurality of profiles corresponding to the login attempt. The one or more computing devices support the plurality profiles with each profile having a corresponding flow. The flow corresponding to the profile is performed prior to allowing continuation of the login attempt. The login attempt is continued, via the one or more computing devices, after the flow corresponding to the profile is completed. Access is granted to the one or more resources, via the one or more computing devices, in response to a successful completion of the login attempt.
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.
Systems, apparatuses and methods are described for creating security information using sensors. The security information may be collected independently between at least two devices. The security information may be filtered by communicating portions of the security information between the devices until a statistical match exists. The remaining non-communicated security information on the at least two devices may then be used for any security related applications.
A security system comprising: a first gateway device; a second gateway device; and a duplex communication line, wherein a first proxy part of the first gateway device is configured, if an inbound data is of a specific protocol, to receive a communication information of the specific protocol transmitted by the inbound data and to send the communication information of the specific protocol to the second gateway device, and, if the inbound data is not of the specific protocol, not to send the inbound data to the second gateway device, and wherein the second proxy part is configured, when the second gateway device receives the communication information of the specific protocol from the first proxy part, to acquire a destination address for communication in an internal network from the communication information of the specific protocol and to send the communication information of the specific protocol to the destination address.
A virtual private router (VPR) intercepts DNS requests and returns a pseudo IP address to the requesting application and the pseudo IP address is mapped to a domain name in the request. Requests for content including the pseudo IP address are modified to include the corresponding domain name and transmitted to an intermediary server, which resolves the domain name to a real IP address and forwards the content request. The content is received by the intermediary server, which returns it to the requesting application, such as by way of the VPR. Real IP addresses may be returned by the intermediary server such that subsequent content requests to the domain name may bypass the intermediary server. Requests for certain domains, ports, and/or protocols may bypass the intermediary server such that the VPR resolves the domain names to real IP addresses.
A social networking website system with automatic registration based on a current location information. Individuals are automatically enrolled into social network services based on a current location determined from their mobile devices. In particular, farmers in rural places can be enrolled into social networks in their local districts, and they can interact with others using audio and video messages employing their local languages. Such interaction can be adhoc in nature, employing audio messages, or audio and video messages. In general, automatic memberships to social networks, social groups and to discussion lists are provided to users, based on user's current location.
A method for implementing secured messages via public e-mail services includes: receiving a content of an original message to be transmitted to a recipient; parsing the content of the original message into a plurality of segments; dividing the plurality of segments into a first group of segments and a second group of segments; generating a first message including the first group of segments and a second message including the second group of segments; and forwarding the first message via a first messaging service and the second message via a second messaging service different from the first messaging service. Further, a method includes receiving the first and the second messages via the first and the second messaging services and merging the first and the second messages to generate the original message.
Disclosed is a method for forwarding information in a distributed network, including that when receiving a message of an Application (APP) protocol, a forwarding device sends, according to a forwarding rule that is sent by a Software Defined Networking (SDN)/OpenFlow controller and corresponds to the APP protocol, the message to a corresponding application server directly or sends the message to a corresponding terminal directly. The disclosure further discloses a system for forwarding information in a distributed network. A transmission bandwidth of a control message between a network control layer and a forwarding layer can be ensured by means of the disclosure, thereby ensuring the stability of an SDN/OpenFlow message between the network control layer and the forwarding layer and ensuring system expansibility.
A router has a shape graph that is a compressed form of a trie that represents routing information for routing data packets in a network, and an update data structure that includes plural entries corresponding to nodes of the shape graph, the plural entries containing count values indicating respective numbers of nodes of the tie represented by the corresponding nodes of the shape graph. The router incrementally updates the shape graph as a portion of the routing information changes, where the incremental updating uses information in the update data structure.
A method and a system for distributed computation of a routing table for a vast communication network are disclosed. The network nodes are arranged into multiple groups with each group associated with a respective network controller. A network controller of a group acquires characterizing information of links emanating from local nodes of the group, communicates the information to each other network controller, reciprocally receives characterizing information from other network controllers, and determines a generic route set from each local node to each other node of the network. The network controllers collectively determine an inverse routing table identifying all routes traversing each individual link in the entire network and exchange node or link state-transition information for updating individual route sets affected by any state transition. Thus, the processing effort of routes generation and tracking network-elements states is distributed among multiple coordinated network controllers.
The present invention provides for identifying the core server parameters to be monitored enterprise-wide and the baseline thresholds/limits for such parameters. The thresholds are dynamically optimized as the server environment evolves over time based on the composite historical performance of the servers in the enterprise. Moreover, each parameter's threshold is optimized in comparison to the thresholds of other core parameters that impact that specific parameter. In the event that the monitoring results in a threshold being met or exceeded alerts may be generated to designated personnel and appropriate corrective action taken.
A communication device capable of handling, even in the case where requests for provision of a service are received from a plurality of devices, the requests appropriately, is provided.A communication device which provides a service to a service utilizing device which utilizes a service, determines whether or not the communication device is executing a service requested from the service utilizing device. In the case where it is determined that the communication device is executing the service, the communication device makes a response to the request with the contents of the response changed according to whether or not the service is able to be provided to a plurality of service utilizing devices.
The present application relates to acquiring sensor data at a user equipment (UE). The described aspects include receiving a first input representing a request to activate one or more sensors. The described aspects further include activating, by a controller at the UE, the one or more sensors in response to receiving the first input. Further, the described aspects include receiving the sensor data from each of the one or more sensors in response to activating the one or more sensors. The described aspects include determining whether a sensor adjustment condition has been satisfied. Additionally, the described aspects include adjusting an acquisition characteristic of the one or more sensors based on determining that the sensor adjustment condition has been satisfied.
The present disclosure is directed toward systems and methods for analyzing event sequence data. Additionally, the present disclosure is directed toward systems and methods for providing visualizations of event sequence data analyses. For example, systems and methods described herein can analyze event sequence data related to websites and provide matrix-based visualizations of the event sequence data. The matrix-based visualization can be interactive and can allow a user to trace changes in traffic volume across webpages and hyperlinks of a website.
The present invention relates to communications systems, and more particularly to enabling one communications device to access data, such as a set of multimedia objects, accessible by another communications device. Identity code information is communicated between the communications devices and the server, wherein a representation of the identity code is communicated from one of the communications devices to the other of the communications devices and then to the server. The identity code is associated with data accessible by one of the communications device and the data is associated with access rights. The server is thereby able to associate specific communications devices, access rights and contents.
The present disclosure describes a vehicle implementing one or more processing modules. These modules are configured to connect and interface with the various buses in the vehicle, where the various buses are connected with the various components of the vehicle to facilitate information transfer among the vehicle components. Each processing module is further modularized with the ability to add and replace other functional modules now or in the future. These functional modules can themselves act as distinct vehicle components. Each processing modules may hand-off processing to other modules depending on its health, processing load, or by third-party control. Thus, the plurality of processing modules helps to implement a middleware point of control to the vehicle with redundancy in processing and safety and security awareness in their applications.
A computer system identifies a pattern of usage of the computer system by a first user, wherein the identified pattern of usage comprises of a first and a second step. The computer system determines the number of times that the first user performs the steps of the identified pattern of usage surpasses a first threshold value. The computer system creates an automation so that each time the first user performs the first step of the identified pattern of usage, the computer system performs the second step of the identified pattern of usage.
An example network access device (NAD) includes a network interface to send and receive packets with an authentication, authorization, and accounting (AAA) server, and a subscriber management service unit (SMSU). The SMSU is configured to, responsive to determining that the AAA server is not reachable by the NAD, send a message from the NAD to the AAA server using the network interface, wherein the message directs the AAA server to send a discovery request message to the NAD, receive the discovery request message from the AAA server using the network interface, wherein the discovery request message includes a request for information about a plurality of subscriber sessions, and generate a discovery response message that includes information about at least a portion of the plurality of subscriber sessions, and send the discovery response message to the network access device using the network interface.
In one example, a merge point network device (MP) receives a plurality of resource reservation request messages for establishing a plurality of label switched paths (LSPs), wherein each of the plurality of LSPs has a common point of local repair network device (PLR) and has the MP as a common MP, wherein each of the resource reservation request messages identifies a common bypass tunnel that extends between the PLR and the MP and avoids a protected resource. The MP stores an association between the bypass tunnel and each of the plurality of LSPs. The MP receives a single message to trigger creation at the merge point network device of backup LSP state information for all of the plurality of LSPs. In response to receiving the single message, the MP installs state information for all of the LSPs that correspond to the bypass tunnel according to the stored association.
The failure isolation method includes: a first step of performing a predetermined action for the monitoring target, collecting a failure event which is a result of the action, applying the failure event to a failure cause analysis rule, and narrowing down the root cause events together with certainty factors; a second step of determining whether the root cause event and the certainty factor narrowed down in the first step satisfy a predetermined requirement and whether the narrowing-down has been completed; and a third step of, when it is determined in the second step that the narrowing-down has not been completed, performing a predetermined additional action for the monitoring target, collecting an additional failure event which is a result of the additional action, applying the additional failure event to the failure cause analysis rule, and narrowing down the root cause events together with the certainty factors.
A software management shell may provide an execution environment for one or more software agents, e.g., by creating new instances of itself on a suitable hardware platform. For example, such a management shell may address new or shifting requirements that renders a software agent non-compliant by creating a new management shell that meets the new or shifting requirements. A new management shells may learn and advertise its capabilities and capacity to assist existing management shells in meeting the new or shifting requirements. The creation of new management shells, and the migration of software agents between shells, may be in response to policy changes that govern how the software agents are to operate within the management shells and on a given hardware platform.
An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
A lighting device utilizes physical or virtual separation of elements within the lighting device to isolate a first portion of data for delivery to a first data network from a second portion of data for delivery to a second data network. The first portion of data relates to a first signal generated responsive to a first sensed condition. The second portion of data may relate to the first signal or to a second signal generated responsive to the first sensed condition or a second sensed condition. The lighting device utilizes a first communication interface to deliver the first portion of data to the first data network and a second communication interface to deliver the second portion of data to the second data network.
In a method of detecting electronic devices, information about a first user equipment device is received at a server. The information is received from at least one second user equipment device within range of a wireless communication interface of the first user equipment device. A presence of the first user equipment device is detected at the server based on the information received from the at least one second user equipment device. The receiving and the detecting may be operations performed by at least one processor of the server. Related apparatus and computer program products are also discussed.
Conference participants are selected via a network element in a network, the geographical area locations, for example, buildings of an enterprise, of the conference participants are determined and depending on the determined locations a geographical conference area, for example a conference room is determined for each conference participant. The conference area together with the conference information is communicated to the conference participants. The availability of the conference participants can be checked for the communication.
An information-signal (e.g., video-stream of certain quality) (SB1.1, SB1.2, SB1.3, . . . ) is split into two or more (Multicast-) sub-data-streams and transmitted via different channels (CH1,CH2). Thereby, on switching over of two information-signals, seamlessly switch over to another information-signal (e.g., from SD to HD quality) is enabled (in particular at the GOP-boundary in case of video).
A controller includes control plane charging system to configure data plane charging system in a plurality of switches to gather charging information for user flows and provide the charging information to the controller. The data plane charging system in a selected switch of the plurality of switches can be configured to gather charging information for a user flow and autonomously provide the charging information to the controller.
A cryptographic hash value is computed in a hardware processing unit of an apparatus. The cryptographic hash value is computed iteratively processing blocks of data in a predetermined order by, for each block: obtaining at least one intermediate value for the block by applying a function to the block, computing a value of a weight function, and updating at least one hash variable with a corresponding intermediate value only if the value of a weight function is equal to at least one predetermined value. The processing unit then generates the cryptographic hash value from the at least one hash variable.
Methods and apparatuses are provided for binding a device and a terminal. In the method, the terminal acquires a binding password from a smart home device in a local area network. The terminal transmits a binding request for binding with the smart home device to the server, where the binding request includes a binding password and a user login Identifier (ID). A binding relationship between the user login ID and the smart home device is established by the server when the binding password in the binding request matches with a binding password stored in a server.
Methods, apparatus, and systems are disclosed for, among other things, secure passphrase handling for computing devices. In one respect, a method is provided. The method includes receiving a plurality of passphrase elements from an input device. The method also includes performing a sequence of secure delay processing operations, each operation generating a delayed output value from an initial value. The passphrase is verified upon completion of the sequence of secure delay processing operations. Further, initial values of respective secure delay processing operations are based on respective passphrase elements and, for each secure delay processing operation after a first secure delay processing operation, a delayed output value from at least one other secure delay processing operations.
Methods and systems for network devices are provided. One method includes receiving a serial data stream at a network interface of a network device coupled to a network link to communicate with other networked devices, the data stream including an alignment marker with a bit pattern for recovering a bit stream used by network device logic for processing the received serial data stream; using a plurality of comparators for simultaneously comparing within a single clock cycle, portions of a parallel data stream generated after converting the serial data stream by a de-serializer of the network device; detecting the bit pattern of the alignment marker in the parallel data stream by one of the plurality of comparators; storing a starting bit position of the alignment marker in the parallel data stream; and reordering the parallel data stream based on the stored starting bit position of the alignment marker.
Provided is a method of transmitting data by sensing a channel in an unlicensed band including sensing a channel on a secondary cell (S-cell) on which data is to be transmitted in the unlicensed band and if it is determined that the channel is in an unoccupied state, transmitting data to a reception node in one of a plurality of flexible TX time windows configured in advance or transmitting a reservation signal to the reception node in one of a plurality of data transmission prohibit windows configured in advance for the data transmission. The plurality of the flexible TX time windows and The plurality of the data transmission prohibit windows are configured to respectively have a boundary of a transmission unit shifted from a boundary of a transmission unit of a primary cell (P-cell) transmission structure by a specific time.
The disclosure is directed to a method of transmitting a reference signal and related electronic devices using the same. In one of the exemplary embodiments, the method would include not limited to transmitting a reference signal by using a directional antenna emitting a first radiation pattern of one or more beams covering 360 N degrees per one of N time slots during a first phase of a full sweeping period, wherein N≥2 and transmitting the reference signal, in response to transmitting the reference signal by using the directional antenna which has the first radiation pattern, by using the directional antenna emitting a second radiation pattern of multiple beams having different angles simultaneously covering a total of 360 M degrees of angles per one of M time slots during a second phase of the full sweeping period, wherein N>M≥1.
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for handling of DRX timers for multiple repetition transmission in wireless communication system, the method comprising: monitoring a Physical Downlink Control Channel (PDCCH) during an active time when Discontinuous Reception (DRX) is configured; receiving multiple repetitions of a PDCCH in a first plurality of subframes; receiving multiple repetitions of Physical Downlink Shared Channel (PDSCH) corresponding to the PDCCH in a second plurality of subframes; starting a Hybrid ARQ (HARQ) Round Trip Time (RTT) Timer in a subframe containing a last repetition of the multiple repetitions of the PDSCH.
An embodiment method includes receiving, by a first user equipment (UE), a message, for a second UE, transmitted over a plurality of resource blocks (RBs) on behalf of a communications controller and determining a plurality of log-likelihood ratios (LLRs) in accordance with the received plurality of RBs. The method also includes transmitting, a subset of the determined LLRs to the second UE.
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for transmitting broadcast signals comprises an encoder encoding service data, a time interleaver interleaving the encoded service data, a mapper mapping the interleaved service data into a plurality of OFDM (Orthogonal Frequency Division Multiplex) symbols to build at least one signal frame, a frequency interleaver interleaving data in the at least one signal frame by using a different interleaving-seed which is used for every OFDM symbol pair comprised of two sequential OFDM symbols, wherein the frequency interleaver calculates an interleaving address for the different interleaving-seed based on a main-PRBS sequence and a cyclic shifting value, a modulator modulating the frequency interleaved data by an OFDM scheme and a transmitter transmitting the broadcast signals having the modulated data, wherein an interleaving-seed is generated based on a cyclic shift value and an FFT size of the modulating.
Provided are a method, device, and non-transitory computer-readable recording medium for supporting relay broadcasting using a mobile device. It is possible to reduce a computing load of a repeater device by distributing a computing load required to produce relay broadcasting content to a plurality of photographer devices and thus widen the range of photographer devices that may participate in relay broadcasting.
A system has a plurality of transmission-capable nodes. A method is provided for suppressing interference at a critical sensor situated within this system. The system is first three-dimensionally mapped. Next, phase shifts are estimated for transmissions from the nodes to produce net destructive interference at the critical sensor, based on the three-dimensional mapping of the system. An aggregate electromagnetic signal from the nodes is sensed at the critical sensor. The phase shifts are then adjusted based on the sensed aggregate electromagnetic signal.
It discloses an acoustic channel-based data communications method which performs channel coding on an original data signal using a CRC coding method and a BCH coding method to obtain a coded sequence; modulates the coded sequence using a preset audio sequence symbol set via a symbol mapping method to obtain a digital audio signal; selects a channel frequency band according to characteristics of a transmitting equipment and interference between frequency bands; and converts the digital audio signal into an analog audio signal through a digital-to-analog converter and transmits the signal to a channel for transmission according to the selected channel frequency band.
Acoustic waves are transmitted bidirectionally through-the-earth in a simple robust architecture in combination with signal-to-noise reduction techniques which ensure the ability to communicate using simple tools available in a mine. An enhanced version includes a personal electronics device designed to be carried by a miner to automatically decode acoustically transmitted text messages.
An optical transmitter may generate a first optical signal having a first wavelength and a second optical signal having a second wavelength. The optical transmitter may output the first and second optical signals to a link without performing a multiplexing operation. The optical transmitter may output part of the first optical signal to the link while part of the second optical signal is being output to the link. An optical receiver may receive the first and second optical signals, via the link, as separate optical signals. The optical receiver may receive part of the first optical signal from the link while part of the second optical signal is being received from the link. The optical receiver may provide the first and second optical signals to a photodetector array that includes a first photodetector to detect the first optical signal and a second photodetector to detect the second optical signal.
Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
Methods and systems for a bi-directional receiver for standard single-mode fiber based on grating couplers may include, in an integrated circuit comprising an optoelectronic transceiver, a multi-wavelength grating coupler, and first and second optical sources coupled to the integrated circuit: coupling first and second source optical signals at first and second wavelengths into the photonically-enabled integrated circuit using the first and second optical sources, where the second wavelength is different from the first wavelength, receiving a first optical data signal at the first wavelength from an optical fiber coupled to the multi-wavelength grating coupler, and receiving a second optical data signal at the second wavelength from the optical fiber. Third and fourth optical data signals at the first and second wavelengths may be communicated out of the optoelectronic transceiver via the multi-wavelength grating coupler.
An optical signal-to-noise ratio monitor includes: a measuring unit that measures an optical signal-to-noise ratio of a polarization multiplexed optical signal, a polarization state of the polarization multiplexed optical signal changing with respect to time; a selector that selects, from a plurality of optical signal-to-noise ratios measured by the measuring unit at a plurality of measurement points within a designated measurement period, an optical signal-to-noise ratio that is higher than an average of the plurality of optical signal-to-noise ratios; and an output unit that outputs the optical signal-to-noise ratio selected by the selector.
An antenna device includes a reflecting mirror, a primary radiator connected with a wireless device including a transmitter and a receiver, a radiator support mechanism that rotatably supports the primary radiator at a focusing position of the mirror with respect to a central axis of the radiator, evaluation data acquisition unit that acquires evaluation data that is data regarding a polarization direction angle that is a tilt angle of a polarization plane of the radiator with respect to a horizontal direction, a tilt angle of its own device correlated with the polarization direction angle, or a detection level, polarization plane adjuster that adjusts the polarization plane of the radiator based on the evaluation data, trigger input unit that inputs a trigger to the polarization plane adjuster, wherein the polarization plane adjuster rotates the radiator to adjust the polarization plane of the radiator according to timing provided by the trigger.
A wireless communications system is described which comprises a base station, a relay device, and a terminal device. The terminal device is operable to transmit a message to the base station via the relay device. The relay device is operable to add a relay header to the message received from the terminal device, the relay header comprising control information for controlling the transmission of subsequent messages from the terminal device to the relay device. The relay device is also operable to relay the message having the relay header added to the base station. By adding such control information to messages being relayed from the terminal device to the base station on the uplink, subsequent downlink communications from the base station to the terminal device can include the control information generated at the relay device (or transmission parameters derived from the control information).
In a data communication network, a wireless relay exchanges signaling data with User Equipment (UEs). The wireless relay compresses/decompresses Long Term Evolution (LTE) S1-MME signaling data and wirelessly exchanges the compressed the LTE S1-MME signaling data with an eNodeB. The eNodeB wirelessly exchanges the compressed LTE S1-MME signaling data with the wireless relay. The eNodeB compresses/decompresses the LTE S1-MME signaling data and exchanges the decompressed LTE S1-MME signaling data with the MME. The MME processes the decompressed LTE S1-MME signaling data to establish wireless data bearers for the UEs through the wireless relay to the eNodeB. The wireless relay wirelessly exchanges user data with the UEs, compresses/decompresses the user data, and wirelessly exchanges the compressed user data with the eNodeB. The eNodeB wirelessly exchanges the compressed UE user data with the wireless relay, compresses/decompresses the user data, and exchanges the decompressed user data.
A wireless repeater chain exerts frequency control. A source wireless repeater wirelessly repeats a Radio Frequency (RF) signal that comprises multiple component frequencies. A target wireless repeater wirelessly receives and processes the repeated RF signal to determine frequency responses through the wireless repeater chain for each of the multiple component frequencies. The target wireless repeater processes the frequency responses to determine frequency gains for each of the multiple component frequencies. The target wireless repeater wirelessly transfers the frequency gains for each of the multiple component frequencies for delivery to the source wireless repeater. The source wireless repeater wirelessly receives the frequency gains for each of the multiple component frequencies and responsively applies the frequency gains to the multiple component frequencies.
User equipment (UE) is configured to receive two types of channel state information (CSI) reference signals (CSI-RS), the first containing more antenna ports and measured less often than the second. A first CSI report is based on first type CSI-RS and a second CSI report on the second type CSI-RS. The second type CSI-RS is at least partially precoded in response to the first CSI report, is precoded for the specific UE, and is transmitted more often than the first type CSI-RS, while the first type CSI-RS is not precoded. The first CSI report contains a first precoding matrix indicator (PMI) parameter and the second CSI report contains only a second PMI parameter of a two-PMI codebook, where the first PMI parameter is a long-term and wideband PMI. The first PMI is derived from measuring the first type CSI-RS in a plurality of subframes and resource blocks.
A transmitting radio node (10) precodes a transmission from an antenna array (12) to a receiving radio node (50). The array (12) includes co-polarized antenna elements (14) aligned in a given spatial dimension of the array (12). The transmitting radio node (10) precodes the transmission from different subarrays (34a, 34b) of the antenna elements (14) using respective coarse-granularity precoders that are factorizable from a multi-granular precoder targeting the given spatial dimension of the array (12) at different granularities, so as to virtualize the subarrays (34a, 34b) as different auxiliary elements (38a, 38b). The transmitting radio node (10) also precode the transmission from the different auxiliary elements (38a, 38b) using one or more finer-granularity precoders that are also factorizable from the multi-granular precoder. In this case, the coarse granularity precoders and the one or more finer-granularity precoders are represented within one or more codebooks (26) used for said precoding.
A device and method for signal separation in an orthogonal time frequency space communication system using MIMO antenna arrays. The communication device includes an antenna arrangement and a receiver. The receiver is configured to receive, from the antenna arrangement, a plurality of pilot signals associated with respective locations in a time-frequency plane wherein the plurality of pilot signals were transmitted from a corresponding plurality of transmit antenna elements. The receiver is further configured to receive signal energy transmitted by the plurality of transmit antenna elements and to measure, based upon the plurality of pilot signals, a plurality of two-dimensional time-frequency coupling channels between the plurality of transmit antenna elements and the antenna arrangement. The receiver is also operative to invert a representation of each of the plurality of two-dimensional time-frequency coupling channels to provide a plurality of inverted channel representations.
Techniques of transmitting wireless communications involve generating orthogonal spreading codes for any number of user devices that are linear combinations of sinusoidal harmonics that match the frequencies within the spread bandwidth. Along these lines, prior to transmitting signals, processing circuitry may generate a set of initial code vectors that form an equiangular tight frame having small cross-correlations. From each of these rows, the processing circuitry produces a new spreading code vector using a code map that is a generalization of a discrete Fourier transform. The difference between the code map and a discrete Fourier transform is that the frequencies of the sinusoidal harmonics are chosen to match the particular frequencies within the spread bandwidth and differ from a center frequency by multiples of the original unspread bandwidth. Different transmitters may then modulate respective signals generated with different spreading code vectors.
A system and methods for cancelling transmission leakage signals in a wide bandwidth Distributed Antenna System (“DAS”) having remote units is disclosed. An internal cancellation circuit within the remote unit is employed to reduce the transmitted leakage signals by generating a cancellation signal. This cancellation signal is added to the received signal to cancel the transmission leakage signal in the receiving signal path. A pilot signal generation circuit is employed to optimize the cancellation circuit operating parameters. The frequency of the pilot signal is swept over a range to determine the pilot frequency having the highest electromagnetic coupling. The amplitude and phase of the cancellation signal is then optimized to minimize the level of transmission leakage in the receiving transmission path.
A light bulb or other lamp device incorporating improved antenna configurations and integrated networking equipment is described herein. In one example, a LED light bulb is arranged to include a wireless transceiver and related wireless network processing circuitry, and is coupled to multiple antennas configured to receive and transmit signals using spatial diversity, beamforming, multiple-input and multiple-output (MIMO), or other multi-antenna techniques. The heat sink in the light bulb may be purposed to provide one or more of the multiple antennas, such as use of respective heat sink structures to serve as a diversity antenna. The wireless network processing circuitry may be used for control of the light bulb or for operability with wireless and non-wireless networks. For example, the network processing circuitry may operate as a wireless network access point, repeater, relay, bridge, or like function.
A measuring system comprises a noise source adapted to provide a noise signal to a device under test. Moreover, it comprises a measuring device adapt to measure a measuring signal generated by the device under test in reaction to the noise signal. The measuring device further comprises a signal splitter adapted to split the measuring signal into at least a first split measuring signal and a second split measuring signal. Moreover it comprises a correlator adapted to correlate a signal derived from the first split measuring signal and a signal derived from the second split measuring signal. Also the measuring device comprises a processor adapted to determine an amplification factor and/or a noise figure of the device under test based upon the correlated signal derived from the first split measuring signal and signal derived from the second split measuring signal.
The invention relates to an HF module, the filter functionality of which can easily be expanded and which has good electrical properties. For this purpose, the module comprises two filter units with a respective HF filter and a switch having two possible switching states. The two filter units are connected in parallel.
An improved approach is provided to identifying the boundary of data encoded using additive cyclic codes. In some embodiment, the process includes determining a first calculated parity of a first bit stream window, and, second, one or more updates to the calculated parity of the bit stream window to determine the parity of the next bit stream window, where after each update to the calculated parity, the calculated parity is compared with the target parity, and matching the calculated parity to the target parity indicates a proper boundary of a bit stream window. In some embodiments, the process supports shortened cyclic codes. In some embodiments, the bit stream boundary can be identified prior to descrambling the bit stream inputs for a given bit stream window. In this way, the process can avoid unnecessarily descrambling of the bit stream windows that are not properly aligned to a bit stream boundary.
A system and method of providing error tolerant memory access operations on a memory device. A method is disclosed including: providing location information of weak memory cells, wherein the location information includes addresses grouped into tiered sets, wherein each tiered set includes addresses having a number of weak memory cells; receiving a target address for a memory read operation; reading data from a virtual repair memory if the target address belongs to a first tiered set of addresses having a number of weak memory cells exceeding a threshold; and if the target address does not belong the first tiered set of addresses, reading data from the memory device and alternatively performing (a) an error correction and error detection (ECED) operation and (b) a target address look up operation, at different settings, until an error free result is obtained.
A computing system includes a network interface, a processor, and a decompression circuit. In response to a compression request from the processor the decompression circuit compresses data to produce compressed data and transmits the compressed data through the network interface. In response to a decompression request from the processor for compressed data the decompression circuit retrieves the requested compressed data, speculatively detects codewords in each of a plurality of overlapping bit windows within the compressed data, selects valid codewords from some, but not all of the overlapping bit windows, decodes the selected valid codewords to generate decompressed data, and provides the decompressed data to the processor.
An error feedback system for a delta sigma modulator is disclosed. The error feedback system has an error transfer function where at least k−1 coefficients are set to zero. This allows the error feedback system to be divided into k feedback paths that are performed in parallel at a clock speed that is 1/k of the system clock of the delta sigma modulator (i.e. the rate at which the output of the delta sigma modulator changes).
Systems, methods, and circuitries for converting an analog voltage to a digital signal are provided. In one example a method to convert an analog voltage into a binary sequence that represents the voltage includes two modes. In the first mode, in each cycle, values for a next two or more of consecutive most significant bits (MSBs) in the sequence are determined using M comparators, wherein M is equal to or greater than 3. In a second mode, in each cycle, M redundant comparison results are determined using the M comparators. A value for the LSB is determined based on the M redundant values. At an end of conversion, the sequence of N bit values is generated based on the MSBs and the LSB.
A clocking system disclosed herein includes a delay locked loop (DLL) circuit with a plurality of delay elements, where the DLL circuit is configured to receive a clock input signal and generate a plurality of clock output signals. The clocking system also includes a feed-forward system configured to increase the speed of the clock signal transmission through the delay elements and to enforce symmetric zero crossings of the clock signal at each of the plurality of delay elements.
A random access memory circuit adapted for use in a field programmable gate array integrated circuit device is disclosed. The FPGA has a programmable array with logic modules and routing interconnects programmably coupleable to the logic modules and the RAM circuit. The RAM circuit has three ports: a first readable port, a second readable port, and a writeable port. The read ports may be programmably synchronous or asynchronous and have a programmably bypassable output pipeline register. The RAM circuit is especially well adapted for implementing register files. A novel interconnect method is also described.
A system for controlling a magnetic switch in urinals includes a switch control unit and a control signal receiving unit connected to the switch control unit via a magnetic field. The switch control unit is configured to generate and eliminate the magnetic field based on a received pulse signal. The control signal receiving unit outputs an on signal in response to sensing the generation of the magnetic field and outputs an off signal in response to sensing the elimination of the magnetic field.
A multi-output control system includes a power conversion module, a first active linear module, a second active linear module, a control module and a feedback control module. The control module controls the feedback control module to adjust an output power based on current signals. The first active linear module and the second active linear module determine whether a difference value between a current value of a first output power and a current value of a second output power is greater than a current difference predetermined value based on the current signals, and the control module adjusts a voltage value of the first output power and a voltage value of the second output power to respectively be within a predetermined voltage range based on the current signals.
A switching power supply apparatus, including serially-connected first and second switching elements, a series circuit of a resonant inductance and a resonant capacitor connected in parallel to the first or second switching element, first and second capacitors respectively connected in parallel to the first and second switching elements, and a switching control circuit that alternately turns on the first and second switching elements. The switching control circuit includes a load detection circuit detecting a load state, a burst control circuit that switches to a burst control mode when the load detection circuit detects a light load, and a detection circuit that detects a timing at which a high-side reference voltage at a connection point between the first and second switching elements has a lowest value. The burst control circuit switches from switching stop to switching operation of the first and second switching elements at the detected timing.
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first and second resonant DC-DC power converters. The first and second inductors are corresponding components of the first and second resonant DC-DC power converters.
Disclosed is a PWM controller with programmable switching frequency for PSR/SSR flyback converter so as to maximize the performance-to-cost ratio by tailor-making the switching frequency as a non-decreasing function of the output load and the maximum switching frequency as a non-increasing function of the input voltage, leading to a plurality of programmable voltage-dependent frequency-load curves, making possible the downsizing of flyback transformer while facilitating the simultaneous compliance with DoE and CoC efficiency requirements.
A controller for use in a two-stage power supply is coupled to control switching of a switching element to regulate a transfer of energy from an input to an output of a flyback converter. The controller activates a boost switching element during a first interval in each line half cycle of an input voltage to boost an output voltage at an output of a boost-bypass converter. The controller deactivates the boost switching element during a second interval in each line half cycle such that the output voltage of the boost-bypass converter drops towards the input voltage during the second interval while the output voltage of the boost-bypass converter is greater than the input voltage. The controller controls the output voltage to follow the input voltage during a third interval of each line half cycle while the boost switching element remains deactivated and the input and output voltages are substantially equal.
An example device in accordance with an aspect of the present disclosure includes a first converter to selectively convert a first input signal to a first output signal, and a second converter to selectively convert a second input signal to a second output signal. A controller is to control switches of the first and second converters based on the input signals and output signals, and based on operating the first and second converters exclusively with respect to each other such that a total of first and second duty cycles does not exceed one.
A DC-to-DC converter includes an input voltage node, an inductor, and a switch coupled to the inductor and the input voltage node. More specifically, the switch has an on state and off state, wherein during the on state, current flowing through the inductor increases and the off state results in a decrease of the current flowing through the inductor via a driver coupled to the switch. The driver comprises a plurality of transistors and an adaptive voltage node, wherein a voltage level at the adaptive voltage node is to vary in accordance with the current flowing through the inductor so as to decrease a variation of the amount of time to turn off the switch.
Method and apparatus for controlling the hysteresis of an output current from a DC-DC converter (3) to a default value (19) for an average output current and within a hysteresis range (11), wherein the output current (6) is measured and is compared with a first reference value and a second reference value, wherein a switch (7) of the DC-DC converter (3) is changed over at the limits of the hysteresis range (11) on the basis of a first reference time (20), at which the output current (6) reaches the first reference value, and a second reference time (24), at which the output current reaches the second reference value, wherein the switch (7) is changed over with a time delay after the second reference time (24), and wherein the time delay is selected on the basis of a time difference between the first reference time (20) and the second reference time (24) in such a manner that a period of time, during which the output current (6) is higher than the default value (19), and a period of time, during which the output current (6) is lower than the default value (19), are compensated for.
The present invention relates to a voltage boosting circuit capable of modulating duty cycle automatically, which comprises an inductor, a switching module, and a control circuit. The inductor is coupled to an input for receiving an input power. The switching module is coupled among the inductor, a ground, and an output for switching so that the input power can charge the inductor and produce charged energy, or for switching so that the charged energy of the inductor can discharge to the output and produce an output voltage. The control circuit outputs at least a control signal according to the charged energy and the output voltage for controlling the switching module to switch the inductor and provide the input power to the output, to switch the charged energy of the inductor to discharge to the output, or to switch the input power to charge the inductor.
Described herein are latching devices where relative speed of movement between members is in part controlled or reduced via eddy current formation and in part controlled or relative motion stopped via a latch arrangement. Various embodiments are described, one being use of a conductive member; at least one magnetic field and a latch member that, prior to latching, moves independently to the at least one conductive member. A kinematic relationship exists between the conductive member and at least one magnetic field that enables the conductive member to move at a different speed relative to the magnetic field on application of an energizing force, thereby inducing an eddy current drag force by relative movement of the conductive member in the magnetic field. The eddy current drag force resulting causes movement of the conductive member causing the conductive member to engage the latch member thereby halting movement between the at least one conductive member and the at least one latch member.
Provided is a linear actuator which is simple in structure, inexpensive to manufacture, in addition, has small magnetic leakage, and can provide a large inertial force without increasing the number of parts and weight. The linear actuator is provided with an output shaft 12 which is supported on a supporting case 11 so as to linearly reciprocate freely, an elastic member 13 which biases the output shaft 12 toward a middle position of the linear reciprocation thereof, a permanent magnet 14 which is fixed to the output shaft 12, a coil 15 which linearly reciprocates the output shaft 12 by having a variable magnetic field act on the permanent magnet 14 and is fixed to the supporting case 11 such that the coil 15 faces one of magnetic poles of the permanent magnet 14, a yoke 16, which is composed of a magnetic material, has a midway portion tightly secured to the other magnetic pole of the permanent magnet 14, extends to the exterior of the coil 15 along the exterior of the permanent magnet 14 with a space from the permanent magnet 14, and has an end portion disposed close to the exterior of the coil 15, and power supply means for forming a variable magnetic field on the coil 15.
A stator having slots separated by stator teeth, into which shaped bars, formed from a plurality of individual wires, are deployed, wherein in each case sidewalls of a stator tooth bounding adjacent slots in a region of the shaped bars run essentially parallel to one another.
Provided is a DC motor for a fuel pump for a vehicle. The DC motor for a fuel pump for a vehicle includes: a housing whose inside is hollow; a stator coupled to the inside of the housing and having a first permanent magnet whose N pole is disposed inwardly in a radial direction and a second permanent magnet whose S pole is disposed inwardly in a radial direction, the first permanent magnet and the second permanent magnet being spaced apart from each other to face each other; and a rotor disposed on an inside of the stator while being spaced apart from the stator, in which a first gap g1 between the first permanent magnet and the rotor is different from a second gap g2 between the second permanent magnet and the rotor, whereby a torque ripple that is a fluctuation width of a cogging torque is reduced.
A motor stator device with simple coil-winding structure is disclosed. The motor stator device includes an insulating base comprising an outer ring base, an inner ring base and a connection base, the outer ring base and the inner ring base alternatively forming outer ring openings, inner ring openings, outer ring sinks and inner ring pillars, the connection base being provided to be wound with a metal coil; a plurality of stator segments being positioned on the insulating base; and a plurality of segment connectors being positioned on the outer ring sinks between the insulating base and the stator segments and having a base part and an extension part opposite to the base part, the extension part being integrally extended from the base part and toward the motor rotor to get close to the inner ring pillar next to the motor rotor, so as to decrease the cogging torque.
A generator includes a plurality of magnets defining one of a rotor and a stator, a conductor including a core and a coil, the conductor defining the other of the rotor and the stator, and a shaft to which the stator is fixable. The core has a width inwardly narrowed from an outer edge toward an inner edge along a longitudinal direction of the core.
Provided are a power transmitting device, a power receiving device, a power supply system, and a power supply method able to supply electric power by emitting electromagnetic waves. A power transmitting device comprises: a calculating unit for calculating the maximum value for the emitted output of electromagnetic waves meeting exposure standards on the basis of a response delay time measured by the communication link between the power transmitting device and a power receiving device; a power transmitting unit for transmitting power via a power supply link with the power receiving device at an output not exceeding the maximum value; an anomaly detecting unit for detecting an anomaly in the power supply link on the basis of communication with the power receiving device via the communication link; and an output control unit for controlling the output on the basis of the detection of an anomaly in the power supply link.
A power transmission system is disclosed in which power is transmitted from a power transmission apparatus to a power receiving apparatus by electric field coupling between active and passive electrodes. The power transmission apparatus includes a step-up/down circuit for stepping up or down a direct voltage and an inverter circuit for converting the direct voltage into an alternating voltage that is output to the active and passive electrodes. The power transmission apparatus controls the step-up/down circuit to sweep a transformation ratio M=Vo1/Vin and detects the ratio M when an input power Pin of the step-up/down circuit is a minimum. The power transmission apparatus drives the step-up/down circuit to obtain the ratio M and perform the power transmission. As a result, there is provided a power transmission system capable of efficiently performing power transmission regardless of the change in a load in the power receiving apparatus.
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless power transfer. For example, an apparatus may include a wireless power controller to communicate between a Wireless Power Receiver (WPR) and a Wireless Power Transmitter (WPT) an indication of a requested amount of power to be provided from the WPT to the WPR via a wireless power signal, said indication is in the form of a load modulation event within a predefined time interval, said load modulation event comprises a change in a level of a magnetic field of said wireless power signal, a duration of said load modulation event is based on the requested amount of power to be provided from the WPT to the WPR.
Provided is a power receiving device in which supply of power from a power supply device can be stopped while a reduction in Q-value is suppressed. The power receiving device includes a first antenna which forms resonant coupling with an antenna of the power supply device; a second antenna which forms electromagnetic induction coupling with the first antenna; a rectifier circuit including a plurality of switches and performing a first operation or a second operation depending on whether the plurality of switches is ON or OFF, the first operation being an operation in which voltage applied from the second antenna is rectified to be outputted, and the second operation being an operation in which a pair of power supply points is short-circuited; a load to which the voltage is applied; and a control circuit which generates a signal for selecting ON or OFF of the plurality of switches.
An electronic device sends a wireless signal to a charging station indicating that charging of a battery of the electronics device is to commence. The electronic device generates a profile representing characteristics of the battery during charging. The electronic device sends a wireless signal to the charging station indicating the first type of charging is to be applied to the battery. The electronic device responds to a determination that charging of the battery is to continue by determining a second type of charging to be applied to the battery. The electronic device determines whether charging of the battery is to continue. In response to a determination that charging of the battery is not to continue, the electronic device sends a wireless signal to the charging station indicating that charging of the battery is to cease.
A power distribution system including first and second ac busbars connected to ac generators. A first active rectifier/inverter has ac input terminals electrically connected to the first ac busbar. A second active rectifier/inverter has ac input terminals electrically connected to the second ac busbar. A first dc interface is electrically connected to dc output terminals of the first active rectifier/inverter and a second dc interface is electrically connected to dc output terminals of the second active rectifier/inverter. The dc interfaces include reverse blocking means. A third active rectifier/inverter operates as a drive and has dc input terminals electrically connected in the parallel to dc output terminals of the first and second dc interfaces by means of an interposing dc busbar. An electric motor, that can optionally form part of a marine thruster T1, is electrically connected to ac output terminals of the third active rectifier/inverter.
A battery energy storage system is disclosed, the battery energy storage system comprising a rechargeable battery assembly for storing and providing energy and a protection system including an arc flash protection device to protect against risks due to arc flashes. The arc flash protection device comprises an overcurrent protection unit which detects overcurrent conditions indicating arc flash conditions in case of a low impedance of the battery assembly and an undervoltage protection unit which detects undervoltage conditions indicating arc flash conditions in case of a low impedance of the battery assembly, wherein upon detecting the overcurrent conditions and/or the undervoltage conditions for a predetermined minimum time period, the arc flash protection device initiates protective measures to prevent further operation of the battery assembly. An energy conversion system comprising such a battery energy storage system, which can be used for stationary and mobile energy supply or distribution applications, is also disclosed.
A protective electrical wiring device includes a protective assembly including a sensor portion, a fault detection portion and a switch portion. A control circuit is configured to automatically perform a test cycle from time to time, each test cycle including a series of tests that determine the operational state of the protective assembly. At least one successive test in the test cycle is configured to test at least a portion of the protective assembly tested by a predecessor test in the test cycle. The control circuit is configured to establish a test result for each test in the series of tests, with each test result being stored in a test result table. The control circuit is configured to effect or not effect an end-of-life state by evaluating at least a portion of the test results in the test result table in accordance with a predetermined voting scheme.
Apparatus and corresponding method contemplating electrical raceway technology. A first segment has opposing first sidewalls and a first partition between the first sidewalls. A second segment has opposing second sidewalls and a second partition between the second sidewalls. The second segment is operably connected to the first segment so that the segments are selectively movable in relation to each other. The first sidewalls overlap the respective second sidewalls, and the partitions overlap at all selected movable positions of the segments, to define separate compartments in the raceway.
A spark plug having a center conductor, an insulator surrounding the center conductor, at least two electrodes forming a spark gap, and a spark plug body surrounding the insulator and having an external thread arranged at the front end of the spark plug for screwing in to an internal combustion engine. A component that is attached to the front end of the spark plug and comes into contact with fuel during operation is formed as a sintered powder injection molded part, referred to as a MIM component.
A laser diode arrangement comprising: at least one semiconductor substrate; at least two laser stacks based on the AlInGaN material system, each laser stack having an active zone, wherein at least one of the at least two laser stacks comprises a two-dimensional structure of laser diodes; and at least one intermediate layer. The laser stacks and the intermediate layer are grown monolithically on the semiconductor substrate. The intermediate layer is arranged between the laser stacks. The active zone of the first laser stack can be actuated separately from the active zone of the at least one further laser stack.
A spectrometer device may include a first QCL configured to operate in a frequency comb mode with spectrally equidistant modes with stable relative phase, a power supply coupled to the first QCL, and a controller coupled to the power supply. The first QCL may include different active region layers based on a vertical transition. The first QCL may be configured to provide a comb output having a cumulative flat gain profile and reduced dispersion refractive index profile in a broad range of driving conditions. The spectrometer device may include a sample cell configured to receive the comb output.
To provide a laser device including an electrically conductive member, which shortens an operation time during electrical connection of laser diode modules, appropriately performs positioning during connection, is highly effective in reducing the number of processes, is highly versatile, and has a simple structure. The laser device includes: a plurality of laser diode modules each including two electrodes; and an electrically conductive member for electrically connecting the electrodes of different ones of the laser diode modules through soldering. The electrically conductive member includes: two electrode insertion portions respectively corresponding to the two electrodes of the laser diode modules; and at least one or more bent portions formed between the two electrode insertion portions, and the electrically conductive member has an overall shape such that a barycenter thereof is located substantially on a straight line that connects the two electrode insertion portions.
Disclosed is a UV-visible laser system having ultrashort pulses with high power and/or high energy. The laser system includes at least one non-linear optical crystal (1) adapted for receiving two distinct ultrashort laser pulses (31, 32) in the visible or infrared domain emitted respectively by two distinct laser pulse sources (11, 12) and a temporal synchronization unit (41, 42) adapted so that the two ultrashort laser pulses (31, 32) are superimposed in time and space in the non-linear optical crystal (1) with any phase shift, and generate, by sum frequency, an ultrashort laser pulse (131) having an optical frequency equal to the sum of the respective optical frequencies of the two distinct laser pulses (31, 32).
A method for producing a water-tight plug connector in which at least one electric conductor such as a wire is introduced into a guide channel of an insulator part via a lateral opening in order to hold the conductor. The insulator part with the introduced conductor is arranged in a plug connector housing, and the lateral opening of the insulator part is closed by a cover. An internal volume of the plug connector housing is then at least partly filled with a sealing compound. A plug connector is produced in such a manner.
There is provided a connector connectable to a mating connector that includes a first jack terminal configured to be coupled to a first plug terminal of the mating connector; a second jack terminal configured to be coupled to a second plug terminal of the mating connector; and a third jack terminal configured to be coupled to the second plug terminal of the mating connector, and having a resistor and a capacitor connected in series thereto. Upon the connector being separated from the mating connector, the second jack terminal is separated from the second plug terminal after the third jack terminal is separated from the second plug terminal, and the first jack terminal is separated from the first plug terminal after the second jack terminal is separated from the second plug terminal.
A lock device for electronic apparatus includes a lock body and a lock-operating unit. The lock body is configured for correspondingly plugging into a port on an electronic apparatus and has at least one protruded section formed therein for tightly abutting on a protrusion located to one lateral side of a plurality of terminals in the port, so that the lock body is locked to the port. And, the lock body locked to the port can be pulled out of the port only with a specific corresponding lock-operating unit.
A locking electrical outlet has a housing with a channel and an outlet latch within, a slider configured to move axially within the channel, a memory block, a locking plate with an opening, and a spring configured to bias the locking plate towards a first angle. The slider is configured move axially rearward relative to the housing by the insertion of the plug. The rearward movement of the slider reduces the angle of the locking plate such that a blade of the plug can move through the opening of the locking plate. The memory block is partially compressed by the slider such that it the slider engages the outlet latch of the housing, temporarily holding the locking plate at the reduced angle until the expansion of the memory block disengages the slider from the outlet latch and allows the spring to return locking plate towards the first angle.
A method for conditioning at least a section of a mating member of a connector unit having the mating member and a corresponding receiving chamber with a cavity wall partially encasing a receiving cavity, including at least the steps of: using a mating force caused by a mate of the mating member and the receiving chamber to force an insulation medium housed in the receiving cavity of the receiving chamber to travel along a distribution path for the insulation medium, wherein the insulation medium exits the receiving cavity and re-enters the receiving cavity along the distribution path and conditioning at least the section of the mating member with the insulation medium while the insulation medium is bypassing the section of the mating member due to the mate of the mating member and the receiving chamber.
A connector includes a first connector portion, a second connector portion having housing members that are joined and fitted to the first connector portion, spacers inserted into the housing members from one side to retain terminals inside the housing members. The housing members each includes a joining surface at which the housing members are joined and an engaging rail formed on the joining surface. The engaging rails restrict a relative movement of the joined housing members in a separating direction with the engaging rails being engaged by inserting the engaging rails to each other along their longitudinal direction. The housing members each has an exposure hole on the other side surface. The exposure holes are located on a straight line perpendicular to the joining surfaces. The spacers are different in color from the housing members, and each has a projection to be exposed from the corresponding exposure hole.
An integrated electrical connector is integrally formed of a sheet and includes a main body. The middle of the main body is formed with an H-shaped cutout portion to divide the main body into a square frame and two elastic pieces. Two first opposing sides of the square frame are disconnected from the elastic pieces and erected upwardly. Inner edges of two second opposing sides of the square frame are connected with lower ends of the two elastic pieces, respectively. Upper ends of the two elastic pieces are inclined upwardly to form an elastic clip having an included angle for insertion of a male terminal. Outer ends of the main body are formed with pins for connection of a PCB board. The structure is simple to provide convenient electrical connection and better reliability.
A connection device employs a plurality of housing portions that are formed separately from one another and further includes a plurality of conductors. The plurality of conductors are situated on a first housing portion, and a second housing portion and a third housing portion are then affixed at opposite ends of the first housing portion to retain the conductors in place on the first housing portion. The first, second, and third housing portions, being connected together, are then received in a receptacle of a fourth housing portion to form the connection device. The conductors each have an elongated shank that is received in an elongated channel formed in the first housing portion before the second and third housing portions are attached thereto.
A fine pitch high density high-speed orthogonal card edge connector includes at least one signal transmission assembly which includes a plug-in connector, a press-fit connector, and a PCB board. A side of the PCB board is provided with a row of first pads, and a side of the PCB board adjacent to the side where the first pads are located is provided with a row of second pads. Each first pad corresponds to one second pad one by one through the wiring of the PCB board. An extension line of each first pad is perpendicular to an extension line of each second pad. The plug-in connector is mounted on the side of the PCB board provided with the first pads and is connected to the first pads. The press-fit connector is mounted on the side of the PCB board provided with the second pads and is connected to the second pads.
Systems and methods are disclosed herein for a reconfigurable faceted reflector for producing a plurality of antenna patterns. The reconfigurable reflector includes a backing structure, a plurality of adjusting mechanisms mounted to the backing structure, and a plurality of reflector facets. Each of the plurality of reflector facets is coupled to a respective one of the plurality of adjusting mechanisms for adjusting the position of the reflector facet with which it is coupled. The reflector facets are arranged to produce a first antenna pattern of the plurality of antenna patterns. By adjusting the plurality of adjusting mechanisms, the position of each of the reflector facets coupled to the respective one of the plurality of adjusting mechanisms is adjusted so that the reflector facets are arranged to produce a second antenna pattern of the plurality of antenna patterns.
The present disclosure relates to an antenna arrangement and a method for radio transmission. The antenna arrangement comprises a pre-coder (310) connected to an antenna array (320). The antenna array (320) comprises a number N of antenna elements ai (321), i=1, 2, . . . , N, each antenna element ai being configured to receive a respective transmit signal component TXi from the pre-coder (310). The pre-coder (310) is configured to receive a number M
An antenna sensor includes an antenna operable to receive and/or transmit radio frequency (RF) signals, and one or more sensors operably connected to the antenna and configured to monitor at least one condition and to output sensor signals. A single connection is provided for connection to an electronic device to transfer RF signals from the antenna and sensor signals from the one or more sensors to the electronic device.
An antenna mounting system includes a metal plate having a void formed therein and one or more continuous slots extending from the void to an edge of the metal plate. An antenna is mounted inside the void.
As the technology relating to controlling electromagnetic waves radiating from the mobile phone such as smart phone during a phone call, wide band waveguide that controls electromagnetic waves radiating from mobile phone and radiating them towards hand was invented. Distance between mobile phone, waveguide and hand is 3 to 6% of the wavelength. Hence, design in near field condition was a problem. This problem was solved by measurement and wide band near field waveguide in which metal sheet is processed was realized. The quantity of electromagnetic waves received by head is reduced to ¼- 1/10 within the entire frequency band used by the mobile phone based on adding this part to the mobile phone such as smart phone.
An apparatus comprising: a deformable antenna configured to operate in a first physical configuration and configured to operate in a second physical configuration that is deformed relative to the first physical configuration; and magnetic material located in close proximity to the deformable antenna and configured to have a first physical configuration when the deformable antenna is in its first physical configuration and configured to have a second physical configuration that is deformed relative to the first physical configuration when the deformable antenna is in its second physical configuration, wherein the magnetic material when in its first physical configuration has a first magnetic permeability and when in its second physical configuration has a second magnetic permeability.
A metal air battery includes: at least one gas diffusion layer including a first surface and a second surface facing the first surface; at least one cathode layer disposed on the first surface and on the second surface of the gas diffusion layer and configured to use oxygen as an active material; an electrolyte membrane disposed on the cathode layer; an metal anode layer disposed on the electrolyte membrane; and a cathode current collector including at least one blade, wherein the gas diffusion layer is electrically conductive, and wherein the at least one blade of the cathode current collector contacts and is at least partially embedded in the gas diffusion layer.
An energy storage pack includes a coolant inlet manifold, a coolant outlet manifold, and a plurality of thermal-exchange tubes extending between the coolant inlet manifold and the coolant outlet manifold to exchange heat between coolant passing through the plurality of thermal-exchange tubes and a plurality of battery cells mounted adjacent to and among the plurality of thermal-exchange tubes within the energy storage pack. In one embodiment, at least one of coolant inlet manifold and the coolant outlet manifold includes a plurality of thermal-exchange tube terminating structures and a plurality of hose segments intercoupling the plurality of thermal-exchange tube terminating structures. The energy storage pack may further include a coolant inlet opening located on the coolant inlet manifold and a coolant outlet opening located on the coolant outlet manifold.
Disclosed is a battery pack, which allows easy assembling and exchange of electrical equipment and has an uncomplicated structure. The battery pack includes at least one battery module, the battery module including a plurality of secondary batteries, and an electrical equipment plate having a plate shape on which at least two of a battery management system (BMS), a current sensor, a relay and a fuse are mounted, the electrical equipment plate being electrically connected to the at least one battery module.
The invention relates to a method for forming a monocell or a bi-cell for a lithium-ion electric energy accumulating device, wherein it is provided to first laminate, in a first laminating unit, a first arrangement comprising a first electrode and two separating elements, so as to obtain a multilayered laminated element. In the first arrangement, the electrode is interposed between the two separating elements without yet being laminated to either of the two separating elements. The method then provides to form a second arrangement comprising the multilayered laminated element and a second electrode. The method finally provides to laminate the second arrangement in a second laminating unit, so as to obtain the cell.
Methods for preparing electrolyte salts for alkaline earth metal-ion batteries (e.g., calcium and magnesium ion batteries) are described. The electrolyte salts comprise alkaline earth metal (e.g., Mg or Ca) salts of bis(fluorosulfonyl)imide (FSI) and 3,4-dicyano-2-trifluoromethylimidazole (TDI). The methods comprise contacting FSI or TDI with an alkaline earth metal bis(trifluoroacetate) salt in trifluoroacetic acid.
Present embodiments include a lithium ion battery module having a lineup of prismatic lithium ion battery cells positioned within a cell receptacle area of a housing of the lithium ion battery module. The prismatic battery cells of the lineup are spaced apart from one another in a spaced arrangement by fixed protrusions extending from internal surfaces of the housing forming the cell receptacle area, and the fixed protrusions extend inwardly to form a plurality of discontinuous slots across a width of the cell receptacle area.
Realized are an electrochemical element and a solid oxide fuel cell that have a dense electrolyte layer and that have excellent durability and robustness, and methods for producing the same. An electrochemical element includes: a metal substrate 2 having a plurality of through holes 21; an electrode layer 3 provided over a front face of the metal substrate 2; and an electrolyte layer 4 provided over the electrode layer 3, wherein the through holes 21 are provided passing through the front face and a back face of the metal substrate 2, the electrode layer 3 is provided in a region larger than a region, of the metal substrate 2, in which the through holes 21 are provided, and the electrolyte layer 4 has a first portion 41 coating the electrode layer 3, and a second portion 42 that is in contact with the front face of the metal substrate 2.
A molding method and a molding device are provided for removing distortion in a separator. In the molding method and the molding device, first and second dies which correspond to a product shape of first and second pre-molded surfaces of a separator base material. In a first molding step, the first die is pressed by applying an impact force towards the first molding surface side of the separator base material causing the separator base material to move towards the second dies. In the second molding step, the second dies are pressed towards the second molding surface side of the separator base material, and the molding part of the separator base material is sandwiched between the first die and the second dies.
This invention provides a lithium secondary battery that comprises a positive electrode comprising a positive electrode active material layer and a negative electrode comprising a negative electrode active material layer. The positive electrode active material layer and the negative electrode active material layer are placed to face each other. The negative electrode active material layer has an area A comprising a non-positive-electrode-facing portion that does not face the positive electrode active material layer. The area A comprises a negative electrode active material, a hot-melt binder and a temperature-sensitive thickener. The hot-melt binder has a melting point and the temperature-sensitive thickener has a gelation temperature both in a range of 45° C. to 100° C.
A method of forming a carbon coating includes heat treating lithium transition metal composite oxide Li0.9+aMbM′cNdOe, in an atmosphere of a gas mixture including carbon dioxide and compound CnH(2n+2−a)[OH]a, or compound CnH(2n), wherein M and M′ are different from each other and are selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, and Ba, and N is different from M and M′ and is selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, Ba, and a combination thereof, or selected from B, F, S, and P, and at least one of the M, M′, and N comprises Ni, Co, Mn, Mo, Cu, or Fe.
Disclosed is a battery pack which can be adaptively used even in various approaching and extending directions of a connection wire even while ensuring the safety by minimizing exposure of an electrode terminal. The battery pack according to the present invention comprises: a cell assembly having a plurality of secondary batteries; a pack housing having an internal space to receive the cell assembly; an electrode terminal which is connected to the cell assembly and is formed to protrude to the outside of the pack housing; and a terminal cover which covers the top portion and a part of the sides of the electrode terminal and is configured to be attached/detached to/from different portions of the pack housing.
A cell wiring module is configured to include a plurality of connection members connecting adjacent electrode terminals of a plurality of single cells having positive and negative electrode terminals. The cell wiring module includes a first unit housing a housed connection member, and a second unit connected to the first unit by a linking connection member different from the housed connection member. Sliding occurs in the connection direction of the connection members between the linking connection member for connection and at least one of the first unit and the second unit.
Articles and methods for protection of electrodes in electrochemical cells, including protective material precursor layers for use in electrode protective structures, are provided. Certain embodiments relate to electrode protective structures that comprise protective material precursor layers that, upon direct contact with a liquid electrolyte, cause a reaction product to form between the material of the precursor layer and a component of the electrolyte.
An articulate battery case encases a battery ensemble having multiple non-contiguous battery segments flexibly interconnected to one another by conductive leads. The articulate battery case employs a plurality of rigid compartments for encasing the battery ensemble. Each compartment is configured for encasing one non-contiguous battery segment. Each compartment is flexibly connected by one or more flexible hinge to at least one adjoining compartment and is articulate therewith. Each compartment defines one or more ports for interconnecting conductive leads between battery segments encased in adjoining compartments. Each compartment is interconnected to every other compartment, with or without one or more intervening compartment. When a battery ensemble is encased within the articulate battery case, it is rendered articulate, i.e., it acquires the articulation characteristics of the case within which it is contained.
A battery assembly according to an exemplary aspect of the present disclosure includes, among other things, a tray, a battery array mounted to the tray, a cover positioned about the battery array and a reinforcement member disposed between the cover and the battery array.
Provided is a battery packaging material comprising a film-like layered body obtained by sequentially layering at least a substrate layer, an adhesive layer, a metal layer and a sealant layer, the battery packaging material exhibiting excellent moldability and being unlikely to crack or form a pinhole during the molding thereof. A battery packaging material comprising a layered body obtained by sequentially layering at least a substrate layer, an adhesive layer, a metal layer and a sealant layer, wherein the substrate layer is configured in a manner such that the sum (A+B) of a value (A) equal to stress when stretching to 50% in the MD direction/stress when stretching to 5% and a value (B) equal to stress when stretching to 50% in the TD direction/stress when stretching to 5% satisfies the relationship A+B≥3.5.
An organic electroluminescence display device includes a first electrode, a second electrode on the first electrode, and a light-emitting unit between the first electrode and the second electrode, the light-emitting unit including a first sub-light-emitting unit on the first electrode and including a first emission layer, a first charge generation layer on the first sub-light-emitting unit, a second sub-light-emitting unit on the first charge generation layer and including a second emission layer, a second charge generation layer on the second sub-light-emitting unit, and a third sub-light-emitting unit on the second charge generation layer and including a third emission layer, wherein each of the first emission layer and the second emission layer includes a first host, the third emission layer includes a second host different from the first host, and a thickness of the second emission layer is 1.0 nm or less.
A flexible multilayer scattering substrate is disclosed. Built on a flexible supporting layer, the multilayer contains one or more scattering layers and other functional layers so that it can extract the trapped light in substrate and waveguide of an OLED. The processing of each layer is fully compatible with large area, flexible OLED manufactory, and by controlling processing conditions of each incorporated layer, the substrate microstructure can be tuned. Topographic features can be created on the top surface of substrate by changing the thickness and properties of the multilayer.
An electroluminescence device and a display device including an electroluminescence device are provided. The electroluminescence device includes an anode including silver, wherein at least a portion of the anode substantially extends in a horizontal direction; a first layer provided over the anode; an organic layer including a luminescent layer; a cathode provided over the organic layer; and an insulating layer provided over an end portion of the anode and an end portion of the first layer, wherein at least a portion of the cathode substantially extends in the horizontal direction in a light emission region, wherein a surface of the insulating layer has a curved portion, and wherein at least a portion of the cathode within a region of the insulating layer above the curved portion extends along a first angled upward direction between the horizontal direction and the thickness direction of the anode.
A white organic light-emitting display device includes a red emission layer between a charge generation layer and a yellow-green emission layer and having a hole transport-type host. The white organic light-emitting display device can improve brightness, color gamut, and color shift rate since the red emission layer functions as a hole transport layer and an electron blocking layer, as well as an emission layer. The white organic light-emitting display device can further improve the efficiency of the red emission layer by reducing exciton quenching between the charge generation layer and the red emission layer by the insertion of an auxiliary layer composed of a hole transport-type host between the charge generation layer and the red emission layer.
A thin film device has a source region, a drain region, a first gate disposed between the source region and the drain region, a second gate disposed between the source region and the drain region, wherein the second gate region is in close proximity with the first gate region, a semiconductor film disposed between the source region, the drain region, and the first and second gate regions, and a dielectric material disposed between the source region, the drain region, the first and second gate regions, and the semiconductor film.
Polymers comprising at least one unit of formula (1) wherein n is 0 or 1, m and p are independently from each other 0, 1, 2, 3, 4, 5 or 6, provided that the sum of n, m and p is at least 2, and n and p are not 0 at the same time, Ar1 and Ar2 are independently from each other C6-14-arylene or C6-14-aryl, which may be substituted with 1 to 4 substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl, and X1, X2 and X3 are independently from each other and at each occurrence O or S, compositions comprising these polymers, and electronic devices comprising a layer formed from the compositions. Preferably, the electronic device is an organic field effect transistor and the layer is the dielectric layer.
There is provided a method of manufacturing an organic light-emitting device including: forming a first organic material layer on a substrate; and forming a mask in a first region on the first organic material layer, and then selectively removing the first organic material layer to form a first organic layer in the first region.
A magnetic cell includes a free region between an intermediate oxide region (e.g., a tunnel barrier) and a secondary oxide region. Both oxide regions may be configured to induce magnetic anisotropy (“MA”) with the free region, enhancing the MA strength of the free region. A getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the secondary oxide region, reducing an oxygen concentration and an electrical resistance of the secondary oxide region. Thus, the secondary oxide region contributes only minimally to the electrical resistance of the cell core. Embodiments of the present disclosure therefore enable a high effective magnetoresistance, low resistance area product, and low programming voltage along with the enhanced MA strength. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
Provided are an electrostrictive element comprising film electrodes that have a good elasticity and conductivity, and a manufacturing method therefor. Film electrodes 3 of an electrostrictive element 1 are sheet-shaped carbon nanotube aggregates 6, and can expand in the fiber direction while maintaining a state in which carbon nanotubes 7 overlap with each other, when the dielectric film 2 expands.
A magnetic topological nanowire structure comprises a superconductor and a quasi-1D magnetic nanowire. The quasi-1D magnetic nanowire is coupled to or embedded in the superconductor to produce a self-contained interaction resulting in a spatially separated pair of Majorana fermions. The pair of Majorana fermions corresponds to the topological superconductor and each of the pair of the Majorana fermions are localized near a respective endpoint of the nanowire.
Disclosed are a superconducting current-limiting element for a current limiter and a method of manufacturing a superconducting current-limiting element for a current limiter, in which the current-limiting element is formed in series by stacking linear superconducting wires, or is formed in parallel by stacking superconducting wires so that one or more superconducting wires are disposed in the same layer, thus facilitating the formation of the current-limiting element in series or in parallel and obviating the use of a winding machine when manufacturing the current-limiting element.
A thermal energy accumulator for power generation and high performance computing center utilizes heat generated by at least one of a transformer, a parking lot, a roof structure, an air conditioner, a generator, an uninterruptible power supply, a thermal energy conveyer and a thermal energy converter; a source of cold condensed compressed air; and at least one of a thermoelectric generator and a thermoelectric gradient inducer to generate electrical power for a performance computing center.
A surface-mountable optoelectronic component has a radiation passage face, an optoelectronic semiconductor chip and a chip carrier. A cavity is formed in the chip carrier and the semiconductor chip is arranged in the cavity. A molding surrounds the chip carrier at least in places. The chip carrier extends completely through the molding in a vertical direction perpendicular to the radiation passage face.
A semiconductor device includes a semiconductor structure formed on a substrate, a gate formed on a first side of the semiconductor structure, and a charge collector layer formed on a second side of the semiconductor structure.
An integrated circuit device may include a substrate including a main surface, a compound semiconductor nanowire extending from the main surface in a first direction perpendicular to the main surface and including a first section and a second section alternately arranged in the first direction, a gate electrode covering the first section, and a gate dielectric layer between the first section and the gate electrode. The first section and the second section may have the same composition as each other and may have different crystal phases from each other.
Provided are a diode, a junction field effect transistor (JFET), and a semiconductor device that have a top doped region. A dopant concentration gradient of the top doped region at one side is different from the dopant concentration gradient of the top doped region at an opposite side. The top doped region is able to increase a breakdown voltage of the device and decrease an on-state resistance (Ron) of the device.
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a fin using double trench epitaxy. The fin may be composed of a III-V semiconductor material and may be grown on a silicon, silicon germanium, or germanium substrate. A double trench aspect ratio trapping (ART) epitaxy method may trap crystalline defects within a first trench (i.e. a defective region) and may permit formation of a fin free of patterning defects in an upper trench (i.e. a fin mold). Crystalline defects within the defective region may be trapped via conventional aspect ratio trapping or three-sided aspect ratio trapping. Fin patterning defects may be avoided by utilizing a fin mold to grow an epitaxial fin and selectively removing dielectric material adjacent to a fin region.
A method of forming self-aligned STI regions extending over portions of a Si substrate to enable the subsequent formation of epitaxially grown embedded S/D regions without using a lithography mask and the resulting device are provided. Embodiments include forming a STI etch mask with laterally separated openings over a Si substrate; forming shallow trenches into the Si substrate through the openings; forming first through fourth oxide spacers on opposite sidewalls of the shallow trenches and the openings; forming a deep STI trench between the first and second oxide spacers and between the third and fourth oxide spacers down into the Si substrate; forming a STI oxide layer over the first through fourth oxide spacers and a portion of the STI etch mask, the STI oxide layer filling the deep STI trenches; and planarizing the STI oxide layer down to the portion of the STI etch mask.
The present disclosure proposes a method of manufacturing a low temperature poly-silicon array substrate, an array substrate and a display panel. The method includes: disposing a substrate, and forming a buffer layer on the substrate; depositing first gas mixture and doped ionized gas by using vapor deposition to form a doped amorphous silicon thin film on the buffer layer; depositing second gas mixture by using vapor deposition to dehydrogenate the amorphous silicon thin film; performing an annealing treatment to the amorphous silicon thin film being dehydrogenated to diffuse dopant ions so as to form a polysilicon layer; and patterning the polysilicon layer.
Embodiments are directed to a method and resulting structures for a vertical field effect transistor (VFET) having an embedded bottom metal contact. A semiconductor fin is formed on a doped region of a substrate. A portion of the doped region adjacent to the semiconductor fin is recessed and an embedded contact is formed on the recessed portion. A material of the conductive rail is selected such that a conductivity of the embedded contact is higher than a conductivity of the doped region.
A method for forming a semiconductor device structure is provided. The method includes forming a mandrel masking structure over a target layer. The method also includes patterning the mandrel masking structure to form mandrel lines parallel to each other, and forming spacer structures on sidewalls of the respective mandrel lines to define first openings. Each of the spacer structures includes a first spacer and a second spacer between the first spacer and the corresponding mandrel line. The method also includes removing the mandrel lines to define second openings, and etching the target layer through the first and second openings to form a target pattern therein.
In accordance with an example embodiment of the present invention, a device comprising one or more porous graphene layers, the or each graphene porous layer comprising a multiplicity of pores. The device may form at least part of a flexible and/or stretchable, and or transparent electronic device.
Sacrificial semiconductor material portions are connected by a sacrificial semiconductor line extending along a different horizontal direction and protruding into an underlying source conductive layer. After formation of a vertically alternating stack of insulating layers and spacer material layers, memory stack structures are formed through the vertically alternating stack and through the sacrificial semiconductor material portions. A backside trench can be formed through the vertically alternating stack employing the sacrificial semiconductor line as an etch stop structure. Source strap material portions providing lateral electrical contact to semiconductor channels of the memory stack structures can be formed by replacement of sacrificial semiconductor material portions and the sacrificial semiconductor line with source strap material portions. Structural-reinforcement portions may be employed to provide structural stability during the replacement process.
A method of making a circuit structure includes growing a bulk layer over a substrate, and growing a donor-supply layer over the bulk layer. The method further includes depositing a doped layer over the donor-supply layer, and patterning the doped layer to form a plurality of islands. The method further includes forming a gate structure over the donor-supply layer, wherein the gate structure is partially over a largest island of the plurality of islands. The method further includes forming a drain over the donor-supply layer, wherein at least one island of the plurality of islands is between the gate structure and the drain.
To provide enhanced data storage devices and systems, various systems, architectures, apparatuses, and methods, are provided herein. In a first example, a resistive memory device is provided. The resistive memory device comprises a substrate, and an active region having resistance properties that can be modified to store one or more data bits, the active region comprising region of the substrate with a chemically altered reduction level to establish a resistive memory property in the substrate. The resistive memory device comprises terminals formed into the substrate and configured to couple the active region to associated electrical contacts.
An offset spacer film (OSS) is formed on a side wall surface of a gate electrode (NLGE, PLGE) to cover a region in which a photo diode (PD) is disposed. Next, an extension region (LNLD, LPLD) is formed using the offset spacer film and the like as an implantation mask. Next, process is provided to remove the offset spacer film covering the region in which the photo diode is disposed. Next, a sidewall insulating film (SWI) is formed on the side wall surface of the gate electrode. Next, a source-drain region (HPDF, LPDF, HNDF, LNDF) is formed using the sidewall insulating film and the like as an implantation mask.
An image sensor includes a semiconductor substrate integrated with at least one first photo-sensing device configured to sense light in a blue wavelength region and at least one second photo-sensing device configured to sense light in a red wavelength region, a color filter layer on the semiconductor substrate and including a blue color filter configured to selectively absorb light in a blue wavelength region and a red color filter configured to selectively absorb light in a red wavelength region, and a third photo-sensing device on the color filter layer and including a pair of electrodes facing each other, and a photoactive layer between the pair of electrodes and configured to selectively absorb light in a green wavelength region.
Each of a plurality of pixels arranged in two dimensions includes a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels. At least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
A short-resistant CSP includes an isolation layer, an electrically conductive RDL, and an insulating layer. The electrically conductive RDL is on the isolation layer and includes a first and a second RDL segment. The insulating layer includes a first insulator portion between the isolation layer and the first RDL segment to improve electrical isolation between the first and second RDL segments. A method for preventing short-circuiting between conductors of CSP includes (1) depositing a first insulating layer on a first substrate region, (2) depositing a RDL segment on the substrate above the first substrate region, at least a portion of the first insulating layer being between the first RDL segment and the first substrate region, and (3) depositing a second RDL segment on the substrate above a second substrate region, such that the first insulating layer interrupts a leakage current path between the first and second RDL segments.
Dark current of FD is eliminated in an image sensor, and conversion efficiency of converting electric charge to voltage is improved. A pixel circuit includes a photoelectric conversion portion, a control transistor, and an electric charge accumulation portion. The photoelectric conversion portion converts light incident along an optical axis to electric charge. The control transistor controls output voltage according to input voltage. The electric charge accumulation portion accumulates electric charge in a region positioned between the control transistor and the photoelectric conversion portion on the optical axis, and supplies a voltage according to the amount of accumulated electric charge as the input voltage to the control transistor.
A unit pixel element that acts as an image sensor or a solar cell according to the present invention comprises a photo detector that drives a photocurrent flow, induced by light incident onto the gate, along the channel between the source and the drain; a first switch that is wired and switched on or switched off between the source terminal of the photo detector and the first solar cell bus; and a second switch that is wired and switched on or switched off between the gate terminal of the photo detector and the second solar cell bus, and features a function of light energy harvesting and high-efficiency photoelectric conversion that generates and supplies effective electric power.
A circuit protection structure applied to a gate driver that is in a display panel (GIP) is provided. The gate driver has a first metal layer, a first isolation layer, a semiconductor layer, a second metal layer, and a second isolation layer. The first metal layer, the first isolation layer, the semiconductor layer, the second metal layer, and the second isolation layer are stacked in sequence. The circuit protection structure includes a protection layer. The protection layer is located on the second isolation layer.
A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A first NMOS transistor is defined by a gate electrode extending along a second gate electrode track. A second PMOS transistor is defined by a gate electrode extending along the second gate electrode track. A second NMOS transistor is defined by a gate electrode extending along the first gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
A semiconductor memory device is provided such as a random-access memory (DRAM) including a plurality of DRAM memory cells. Each of the DRAM cells includes an N-type transistor, a P-type transistor, and a common capacitor. The components are disposed in the same direction as the bit-line, with the common capacitor occupying the center region between the N- and P-type transistors. The common capacitor is a metal insulator metal (MIM) capacitor configured by connecting three capacitor elements in parallel. The three capacitors include a first capacitor element formed on a first source/drain region of the N-type transistor, a second capacitor element formed on a first source/drain region of the P-type transistor, and a third element over the field isolation region between the transistors. A bottom electrode of each of these capacitor elements connects the first source/drain region of the N-type transistor to a first source/drain region of the P-type transistor.
A half-bridge circuit comprises a high supply contact and a low supply contact. A half-bridge output contact is connectable to drive a load and has a high-side between the high supply contact and the half-bridge output contact and a low-side between the half-bridge output contact and the low supply contact. A high-side bidirectional vertical power transistor at the high-side has a source connected to the high supply contact, and a low-side bidirectional vertical power transistor at the low-side, transistor has a source connected to the low supply contact. The high-side bidirectional vertical power transistor and low-side bidirectional vertical power transistor are connected in cascode and share a common drain connected to the half-bridge output contact, and are controllable to alternatingly allow a current flow from the high supply contact to the half-bridge output contact or from the half-bridge output contact to the low supply contact.
A manufacturing method for an array substrate is disclosed. The method includes: forming a gate electrode on a substrate; depositing a gate insulation layer, a semiconductor layer, a source-drain metal layer and a passivation layer on the gate electrode and the substrate, and through a mask process to perform a patterning process to the semiconductor layer, the source-drain metal layer and the passivation layer in order to form a semiconductor pattern, a source-drain pattern and a contact hole pattern; and forming an ITO pixel electrode on the passivation layer and the contact hole pattern. An array substrate is also disclosed. The present invention adopts one mask process to form the semiconductor pattern, the source-drain pattern and the contact hole pattern such that the process of the array substrate is reduced to three masks in order to reduce the manufacturing cost, reduce the operation time and increase the production efficiency.
A semiconductor device includes at least first and second semiconductor chips stacked on each other along a first direction, at least one through-silicon-via (TSV) through at least the first semiconductor chip of the first and second semiconductor chips, a contact pad on the at least one TSV of the first semiconductor chip, the contact pad electrically connecting the TSV of the first semiconductor chip to the second semiconductor chip, and a plurality of dummy pads on the first semiconductor chip, the plurality of dummy pads being spaced apart from each other and from the contact pad along a second direction, and the dummy pads having same heights as the contact pads as measured between respective top and bottom surfaces along the first direction.
A device includes a spacer, which includes a recess extending from a top surface of the spacer into the spacer, and a conductive feature including a first portion and a second portion continuously connected to the first portion. The first portion extends into the recess. The second portion is on the top surface of the spacer. A die is attached to the spacer, and a lower portion of the first die extends into the recess.
A wafer-to-wafer semiconductor device includes a first wafer substrate having a first bonding layer formed on a first bulk substrate layer. A second wafer substrate includes a second bonding layer formed on a second bulk substrate layer. The second bonding layer is bonded to the first bonding layer to define a bonding interface. At least one of the first wafer substrate and the second wafer substrate includes a crack-arresting film layer configured to increase a bonding energy of the bonding interface.
A semiconductor chip includes a semiconductor body having a bottom side and a top side opposite the bottom side, and passivation arranged on the top side. The semiconductor chip is positioned on the carrier by picking the semiconductor chip and placing the semiconductor chip on the carrier, and pressing the semiconductor chip onto the carrier by a pressing force in a pressing direction, such that the pressing force acts on the semiconductor chip only above one or more continuous chip metallization sections arranged on the top side. Each of the one or more continuous chip metallization sections includes an annularly closed edge section which has a minimum width of more than zero in each direction perpendicular to the pressing direction. The pressing force does not act on the semiconductor chip above any of the edge sections.
A method of fabricating a semiconductor structure includes forming an alignment mark layer on a substrate; patterning the alignment mark layer for forming at least one alignment mark feature; forming a bottom conductive layer on the patterned alignment mark layer in a substantially conformal manner; forming an insulator layer on the bottom conductive layer; and forming a top conductive layer on the insulator layer.
The present disclosure relates to semiconductor structures and, more particularly, to a corrosion and/or etch protection layer for contacts and interconnect metallization integration structures and methods of manufacture. The structure includes a metallization structure formed within a trench of a substrate and a layer of cobalt phosphorous (CoP) on the metallization structure. The CoP layer is structured to prevent metal migration from the metallization structure and corrosion of the metallization structure during etching processes.
The present disclosure relates to a method for forming an interconnect structure. In some embodiments, the method may be performed by forming an opening within a sacrificial layer. The sacrificial layer is over a substrate. A conductive material is formed within the opening and over the sacrificial layer. The conductive material within the opening defines a conductive body. The conductive material is patterned to define a conductive projection extending outward from the conductive body. The sacrificial layer is removed and a dielectric material is formed surrounding the conductive body and the conductive projection.
According to an exemplary embodiment, a semiconductor device is provided. The semiconductor device includes a first seal ring and a first circuit. The first circuit includes a first capacitor and a first inductor connected in series. The first circuit is connected between the first seal ring and a ground.
Methods and systems for improved matching for on-chip capacitors may comprise in a semiconductor die comprising an on-chip capacitor with one or more metal layers: electrically coupling a first set of metal fingers, electrically coupling a second set of metal fingers that are interdigitated with the first set of metal fingers, wherein the first set of metal fingers and the second set of metal fingers are arranged symmetrically in the semiconductor die, and configuring the on-chip capacitor in a plurality of symmetric sections, wherein a boundary between each of the plurality of sections is configured in a zig-zag pattern. The first set of metal fingers and the second set of metal fingers may be arranged with radial symmetry. A first set of metal fingers in a first metal layer may be electrically coupled to a set of metal fingers in a second metal layer.
Provided is a method for manufacturing a composite body, the method containing: a composition preparation process of preparing a composition that contains a polymer having a cationic functional group and having a weight average molecular weight of from 2,000 to 1,000,000, and that has a pH of from 2.0 to 11.0; a composite member preparation process of preparing a composite member that includes a member A and a member B, a surface of the member B having a defined isoelectric point, and that satisfies a relationship: the isoelectric point of a surface of the member B< the pH of the composition
A semiconductor device that includes a first plurality of fin structures in a first device region and a second plurality of fin structures in a second device region. The first plurality of fin structures includes adjacent fin structures separated by a lesser pitch than the adjacent fin structures in the second plurality of fin structures. At least one layer of dielectric material between adjacent fin structures, wherein a portion of the first plurality of fin structures extending above the at least one layer of dielectric material in the first device region is substantially equal to the portion of the second plurality of fin structures extending above the at least one layer of dielectric material in the second device region. Source and drain regions are present on opposing sides of a gate structure that is present on the fin structures.
A semiconductor device includes a plurality of fins spaced apart from each other on a substrate; a liner layer on the substrate between each fin of the plurality of fins and on at least a portion of a sidewall of each fin; and a plurality of isolation regions adjacent and between the plurality of fins. The plurality of isolation regions includes a dielectric layer; and a doped region on the dielectric layer.
An assembly used in a process chamber for depositing a film on a wafer and including a pedestal extending from a central axis. An actuator is configured for controlling movement of the pedestal. A central shaft extends between the actuator and pedestal, the central shaft configured to move the pedestal along the central axis. A lift pad is configured to rest upon the pedestal and having a pad top surface configured to support a wafer placed thereon. A pad shaft extends between the actuator and the lift pad and controls movement of the lift pad. The pad shaft is positioned within the central shaft and is configured to separate the lift pad from the pedestal top surface by a process rotation displacement when the pedestal is in an upwards position. The pad shaft is configured to rotate relative to the pedestal top surface between first and second angular orientations.
An apparatus for treating the surface of a microelectronic workpiece via impingement of the surface with at least one fluid and a method for operating the apparatus are described. In particular, the apparatus includes a treatment chamber defining an interior space to treat the microelectronic workpiece with at least one fluid within the treatment chamber, and a movable chuck that supports the workpiece within the treatment chamber. The apparatus further includes a workpiece translational drive system configured to translate the movable chuck between a workpiece load position and at least one processing position at which the workpiece is treated with the at least one fluid using at least one nozzle connected to at least one fluid supply, and a workpiece rotational drive system configured to rotate the microelectronic workpiece.
A method for forming polysilicon on a semiconductor substrate that include providing amorphous silicon on a semiconductor substrate, exposing at least an area of the amorphous silicon to a first laser beam and a second laser beam, characterized in that during exposing the area to the second laser beam no displacement of the laser beam relative to the area occurs. In addition, the use of such method for producing large grain polysilicon. In particular, the use of such method for producing vertical grain polysilicon. Further, the use of such method for producing sensors, MEMS, NEMS, Non Volatile Memory, Volatile memory, NAND Flash, DRAM, Poly Si contacts and interconnects.
A method of depositing ALD films on semiconductor substrates processed in a micro-volume of a plasma enhanced atomic layer deposition (PEALD) reaction chamber wherein a single semiconductor substrate is supported on a ceramic surface of a pedestal and process gas is introduced through gas outlets in a ceramic surface of a showerhead into a reaction zone above the semiconductor substrate, includes (a) cleaning the ceramic surfaces of the pedestal and showerhead with a fluorine plasma such that aluminum-rich byproducts are formed on the ceramic surfaces, (b) depositing a conformal halide-free atomic layer deposition (ALD) oxide undercoating on the ceramic surfaces so as to cover the aluminum-rich byproducts, (c) depositing a pre-coating on the halide-free ALD oxide undercoating, and (d) processing a batch of semiconductor substrates by transferring each semiconductor substrate into the reaction chamber and depositing a film on the semiconductor substrate supported on the ceramic surface of the pedestal.
An ion transport optical system is disposed between a collision cell and an orthogonal acceleration unit. When releasing ions that are held in the collision cell, an accelerating electric field in which a large potential difference exists is created between an exit-side end of an ion guide and a first stage of the ion transport optical system, and a decelerating electric field in which a relatively small potential difference exists is created between a final stage of the ion transport optical system and an entrance end of the orthogonal acceleration unit. In the accelerating electric field, the velocity of ions is increased overall by imparting a large amount of energy to the ions, and spreading of ions in the ion travel direction that is caused by differences between the mass-to-charge ratios of the ions is reduced.
The present invention provides methods and systems for a modular ion generator device that includes a bottom portion, two opposed side portions, a front end, a back end, and a top portion. A cavity is formed within the two opposed side portions, front end, back end, and top portion. At least one electrode is positioned within the cavity, and an engagement device is engaged to the front end and/or an engagement device engaged to the back end for allowing one or more modular ion generator devices to be selectively secured to one another.
Disclosed herein are embodiments of a system and method for preparing matrix-coated samples for analysis using mass spectrometry. In particular disclosed embodiments, the system and methods of using the system utilize an electric field to enhance results obtained from mass spectrometric analysis of the matrix-coated samples. The methods disclosed herein can be used to prepare biological samples that have improved characteristics facilitating the detection, localization, and/or identification of biomarkers for disease.
A multi charged particle beam writing method includes calculating an offset dose to irradiate all the small regions by multiplying one beam dose equivalent to a maximum irradiation time of multi-beams of each pass in multiple writing by a maximum number of defective beams being always ON to irradiate one of the small regions; calculating an incident dose, in addition to the offset dose, for each of the small regions; and performing multiple writing, using multi-beams including a defective beam being always ON, such that a beam of a total dose, between the incident dose and the offset dose, irradiates a corresponding small region for each small region, while switching a beam for each pass of the multiple writing, and controlling an irradiation time equivalent to the offset dose by a common blanking mechanism collectively blanking-controlling the multi-beams.
For a novice user to easily recognize a difference between imaging results caused by a difference between observation conditions, a computer has an operation screen display observation target setting buttons for changing an observation condition for a specimen including a combination of parameter setting values of a charged particle beam apparatus. The processing unit has the operation screen display a radar chart including a characteristic, indicated by three or more incompatible items, of an observation condition for each of the observation target setting buttons. The radar chart indicates at least items of high resolution, emphasis on surface structure and emphasis on material difference.
A system and method for using a high-performance photoionization subsystem are disclosed. Embodiments of the present disclosure employ narrow bandwidth laser radiation to selectively excite ionizing resonant states of gaseous atoms in electric fields. This subsystem and method may be incorporated in an ion source producing ions by photoionizing gaseous atoms; the resultant ions may be employed to efficiently produce an ion beam of high brightness.
A plug-on neutral circuit breaker includes a housing, a neutral terminal, and a biasing member. The neutral terminal is pivotally coupled to the housing and includes a body portion, a first leg, and a second leg. The first leg extends from the body portion in a first direction and the second leg extends from the body portion in a second direction. The biasing member is positioned within the housing and is configured to engage the second leg of the neutral terminal, thereby biasing the neutral terminal in a first rotational direction. The biasing of the neutral terminal in the first rotational direction causes a portion of the first leg of the neutral terminal to be urged into contact with a neutral bar of an electrical distribution apparatus in response to the plug-on neutral circuit breaker being installed in the electrical distribution apparatus.
A power switching apparatus includes a detection circuit, a control circuit and an auxiliary power circuit. The detection circuit comprises a voltage adjusting unit, a delay unit, a first switch unit and an isolation unit. The auxiliary power circuit comprises an auxiliary power input side and an output side. When a main power supplies power normally or the main power stops supplying power but the delay unit continues working in a setting time, the first switch unit is turned on. The isolation unit sends a first signal to the control circuit. The auxiliary power input side does not conduct to the output side. When the main power stops supplying power and the delay unit stops working, the first switch unit is turned off. The isolation unit does not send the first signal to the control circuit. The auxiliary power input side conducts to the output side.
The present invention is an electronic device comprising a first substrate, a second substrate arranged opposite the first substrate, a sealed portion arranged between the first substrate and the second substrate, and a sealing portion that connects the first and the second substrate and is provided around the sealed portion, wherein at least a portion of the sealing portion following along the periphery of the sealed portion has outer resin sealing portions respectively fixed to the first substrate and the second substrate and an intermediate resin sealing portion arranged so as to be interposed by the outer resin sealing portions between the first substrate and the second substrate, the outer resin sealing portions and the intermediate resin sealing portion contain resin, and a melt flow rate or melting point of the intermediate resin sealing portion differs from a melt flow rate or melting point of the outer resin sealing portions.
A multi-layer ceramic capacitor includes a multi-layer unit, a side margin, and a bonding unit. The multi-layer unit includes ceramic layers and internal electrodes. The ceramic layers are made of first ceramics and laminated in a first direction, the first ceramics having a first average crystal grain diameter. The internal electrodes are disposed between the ceramic layers. The side margin is made of second ceramics and covers the multi-layer unit from a second direction orthogonal to the first direction, the second ceramics having a second average crystal grain diameter. The bonding unit is made of third ceramics and disposed between the multi-layer unit and the side margin, the third ceramics having a third average crystal grain diameter that is larger than the first average crystal grain diameter and the second average crystal grain diameter.
Improved termination features for multilayer electronic components are disclosed. Monolithic components are provided with plated terminations whereby the need for typical thick-film termination stripes is eliminated or greatly simplified. Such termination technology eliminates many typical termination problems and enables a higher number of terminations with finer pitch, which may be especially beneficial on smaller electronic components. The subject plated terminations are guided and anchored by exposed internal electrode tabs and additional anchor tab portions which may optionally extend to the cover layers of a multilayer component. Such anchor tabs may be positioned internally or externally relative to a chip structure to nucleate additional metallized plating material. External anchor tabs positioned on top and bottom sides of a monolithic structure can facilitate the formation of wrap-around plated terminations. The disclosed technology may be utilized with a plurality of monolithic multilayer components, including interdigitated capacitors, multilayer capacitor arrays, and integrated passive components. A variety of different plating techniques and termination materials may be employed in the formation of the subject self-determining plated terminations.
A surface mount power inductor component for a circuit board includes a magnetic body, at least one conductive coil, and surface mount terminations for completing an electrical connection between the conductive coil and the circuit board. One of the body and the surface mount terminations is configured to accommodate a separately provided component in a vertically stacked relation with the separately provided circuit board component being located between the circuit board and the body.
A switching power converter includes a first and second switching device, an air core coupled inductor, and a controller. The air core coupled inductor includes a first winding electrically coupled to the first switching device and a second winding electrically coupled to the second switching device. The first and second windings are magnetically coupled. The controller is operable to cause the first and second switching devices to repeatedly switch between their conductive and non-conductive states at a frequency of at least 100 kilohertz to cause current through the first and second windings to repeatedly cycle, thereby providing power to an output port. The switching power converter may have a topology including, but not limited to, a buck converter topology, a boost converter topology, and a buck-boost converter topology.
The present invention provides an R-T-B based permanent magnet suitable as a magnet with a variable magnetic force for a motor with variable magnetic flux, which has a high residual magnetic flux density, a low coercivity, and a magnetic force that can be reversibly varied by a small external magnetic field. A permanent magnet with a high residual magnetic flux density and a low coercivity that is suitable as a variable magnet for a motor with variable magnetic flux can be obtained, by selecting the rare earth elements consisting of one or more of Y, La and Ce for a predetermined amount of the rare earth element(s) R in the R-T-B based permanent magnet, and further adding a predetermined amount of the additive element(s) which is at least one of Al, Cu, Zr, Hf and Ti.
Disclosed is a grain-oriented electrical steel sheet exhibiting low hysteresis loss and low coercive force, in which an increase in hysteresis loss due to laser irradiation or electron beam irradiation, which has been a conventional concern, is effectively inhibited. The grain-oriented electrical steel sheet has closure domain regions (X) formed to divide the magnetic domains in a rolling direction, from one end to the other in the width direction of the steel sheet, provided that Expression (1) is satisfied: −(500t−80)×s+230≤w≤−(500t−80)×s+330 Expression (1), where t represents a sheet thickness (mm); w represents a smaller one of the widths (μm) of the regions measured on the front and rear surfaces of the steel sheet, respectively, by using a Bitter method; and s represents an average number of the regions present within one crystal grain.
A method is provided for producing an R-T-B based alloy powder. The method includes providing an alloy powder containing 27.5 to 36.0 mass % of R, where R is at least one among the rare-earth elements and always includes at least one of Nd and Pr, 0.85 to 1.05 mass % of B, 0.1 to 2.5 mass % of element M (Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb and/or Bi), and a balance T, where T is Fe or is Fe and Co; and pulverizing the powder by introducing the powder and a pulverization gas in a pulverization chamber. The pulverization includes attrition while circulating the alloy powder with a flow of the pulverization gas in the pulverization chamber. The pulverization gas has a gauge pressure of 0.75 MPa or more, and the residence time is 6 minutes or more.
The present invention provides a rare earth based magnet that inhibits the high temperature demagnetization rate even when less or no heavy rare earth elements such as Dy, Tb and the like than before are used. The rare earth based magnet according to the present invention is a sintered magnet which includes R2T14B crystal grains as main phase and grain boundary phases between the R2T14B crystal grains. when evaluating the cross-sectional area distribution of the main phase crystal grains by histogram in any cross-section of the rare earth based magnet, the crystal grains with large particle size and the crystal grains with small particle size are controlled so that the cross-sectional area distribution becomes the one which respectively has at least one peak at two sides of the average value of the cross-sectional area.
A copper alloy sheet for terminal and connector materials contains 4.5 mass % to 12.0 mass % of Zn, 0.40 mass % to 0.9 mass % of Sn, 0.01 mass % to 0.08 mass % of P, and 0.20 mass % to 0.85 mass % of Ni with a remainder being Cu and inevitable impurities, a relationship of 11≤[Zn]+7.5×[Sn]+16×[P]+3.5×[Ni]≤19 is satisfied, a relationship of 7≤[Ni]/[P]≤40 is satisfied in a case in which the content of Ni is in a range of 0.35 mass % to 0.85 mass %, an average crystal grain diameter is in a range of 2.0 μm to 8.0 μm, an average particle diameter of circular or elliptical precipitates is in a range of 4.0 nm to 25.0 nm or a proportion of the number of precipitates having a particle diameter in a range of 4.0 nm to 25.0 nm in the precipitates is 70% or more, an electric conductivity is 29% IACS or more, a percentage of stress relaxation is 30% or less at 150° C. for 1000 hours as stress relaxation resistance, bending workability is R/t≤0.5 at W bending, solderability is excellent, and a Young's modulus is 100×103 N/mm2 or more.
A crystal monochromator is manufactured by heating a crystal having an original thickness to a temperature of over about 850° C. The crystal is compressed for a duration of approximately 1-5 minutes with a force of about 5-10 metric tons while the crystal is maintained at the temperature of over about 850° C. to plastically deform the crystal along an axis, wherein the compressing causes a plastic deformation of about 0.5%-1.5% of the original thickness. The crystal may be sliced to form crystal monochromators having a mosaicity of between about 15-28 arcminutes and a slow neutron reflectivity of over 70% at a rocking curve peak.
The invention relates to a method for preparing lead (212) for medical use. This method comprises the production of lead (212) by the decay of radium (224) in a generator comprising a solid medium to which the radium (224) is bound, followed by the extraction of the lead (212) from the generator in the form of an aqueous solution A1, characterized in that the lead (212) contained in the aqueous solution A1 is purified from the radiological and chemical impurities, also contained in said aqueous solution, by a liquid chromatography on a column. The invention also relates to an apparatus specially designed for automated implementation in a closed system of said method. It further relates to lead (212) produced by means of this method and this apparatus. Applications: manufacture of radiopharmaceuticals based on lead (212), useful in nuclear medicine for the treatment of cancers, particularly by a-radioimmunotherapy, or for medical imaging, in both humans and animals.
Apparatuses, processes and methods for the separation, isolation, or removal of radioactive isotopes from liquid radioactive waste, these processes and methods employing a plurality of microspheres. In some embodiments, the processes and methods further include the vitrification of the separated isotopes, generally with the plurality of microspheres. Vitrification is often a step in a larger scheme of preparing the radioactive isotopes for long-term storage or other disposition.
A core of a light water reactor has a plurality of fuel assemblies. The fuel assemblies include a plurality of fuel rods in which a lower end is supported by a lower tie-plate and an upper end is supported by an upper tie-plate. The fuel rods form plenums above a nuclear fuel material zone and have a neutron absorbing material filling zone under the nuclear fuel material zone. Neutron absorbing members attached to the upper tie-plate are disposed between mutual plenums of the neighboring fuel rods above the nuclear fuel material zone. The neutron absorbing members have a length of 500 mm and are positioned at a distance of 300 mm from the nuclear fuel material zone. Even if the overall core is assumed to become a state of 100% void, no positive reactivity is inserted to the core.
A computing system is configured to process at least one voice input of a user and output an audio result. The computing system comprises at least one microphone configured to receive the voice input from the user. The computing system further comprises at least one processor configured to at least interpret the voice input and generate the audio result. The computing system also comprises an output speaker device configured to output the audio result. The audio result includes a description of whether one or more behavioral health states associated with the user have been detected.
A monitoring system and method tracks a patient's position over time and ensures that proper turning or other manipulation is done within the time prescribed. Preferably, the techniques herein continuously monitor patient position and alert medical or other personnel of the need for turning or other patient manipulation. The system may be implemented within a medical or other care facility, or within a patient's home.
A test mode setting circuit may include: a first test mode signal generation unit operated by a first supply voltage, and suitable for activating a first test mode signal at a first voltage level in a state where mode setting is being performed, the first test mode signal corresponding to a test code among a plurality of first test mode signals; and a second test mode signal generation unit operated by a second supply voltage, and suitable for latching the first test mode signal at a second voltage level and generating the latched first test mode signal as a second test mode signal even when the first supply voltage is deactivated to a third supply voltage lower than the first supply voltage.
Disclosed herein are novel charge mode readout circuits and associated methods of signal processing. The devices and methods of the invention allow for the improved processing of stored signals by a charge mode readout amplifier, wherein the readout level may be shifted to a desired range and wherein a fully differential output swing may be imparted. The invention advantageously employs a single pair of capacitors to serve the dual roles of modulating amplifier gain and level shifting the output.
Systems and methods relating generally to data processing, and more particularly to systems and methods for characterizing a solid state memory. In one embodiment, the systems and methods may include programming a first cell of a solid state memory device to a first voltage, programming a second cell of the solid state memory device to a second voltage different than the first voltage, detecting a voltage shift in the first cell when the second cell is being programmed; characterizing the first voltage of the first cell offset by the voltage shift as an interim voltage of the first cell, and repeatedly reading the interim voltage of the first cell using a first set of incrementally adjusted voltage values until an output of the first cell changes.
A device includes a non-volatile solid-state memory array comprising a plurality of blocks, each of the plurality of blocks configured to store data in a single-bit per cell mode or a multiple-bit per cell mode, and a controller. The controller is configured to receive write data from a host device, program the write data to a first block of the plurality of blocks of the memory array using the single-bit per cell mode, and perform a data consolidation operation on the first block at least in part by programming at least a portion of the write data together with data stored in a separate second block of the memory array to a third block of the memory array using the multiple-bit per cell mode.
A processor including a computing and memory structure including X in number integration units and X in number communication units, and a control unit. The integration units are computing and memory units (CMUs), each computing and memory unit (CMU) is connected to a corresponding communication unit. The control unit is configured to produce control signals according to the commands, connect communication networks between the CMUs, choose operand addresses and result storage addresses, and search for one or a plurality of idle CMUs when extra CMUs are required for an operation. Each computing and memory unit includes M in number bit units and M−1 in number vertical line switches. Each bit unit includes a resistor, a horizontal line switch and N in number memristors. X is a positive integer greater than or equal to 2; M is a positive integer greater than or equal to 1.
A resistive memory device includes a first region including a first region including a plurality of first resistive memory cells, and a second region including a plurality of second resistive memory cells, wherein the resistive memory device is suitable for applying a first recovery pulse cyclically at a regular interval to the first resistive memory cells for recovering a drift of the first memory cells, and for applying a second recovery pulse to a read target memory cell among the second memory resistive cells.
An integrated circuit (IC) and a mobile device are provided. The IC includes a memory cell that includes a word line, a bit line pair, and a storage cell connected to the word line and the bit line pair. The IC further includes a timing control circuit configured to generate switch signals based on an operation control signal, and a switch circuit configured to receive a first voltage, a second voltage and a third voltage having different levels, and output, to the word line, one among the first voltage, the second voltage, and the third voltage based on the switch signals.
An apparatus for storing X-bit digitized data, the register file comprising: a plurality of registers each register configured for storing X bits, wherein each register is partitioned into Y sub-registers such that each sub-register stores at least X/Y bits, and wherein at least one extra X/Y-bit sub-register is incorporated in each register to provide redundancy in the number of sub-registers for a total of at least Y+1 sub-registers per register, so that if a first sub-register in a first register includes faulty bits, data destined for storage in the first sub-register is stored in a second sub-register, in the first register, that does not include faulty bits.
A semiconductor apparatus may be provided. The semiconductor apparatus may include a plurality of memory blocks. The semiconductor apparatus may include a peripheral circuit region arranged between the plurality of memory blocks. A plurality of signal input/output (I/O) pads may be arranged in the plurality of memory blocks.
The present invention provides a voltage scaling-up circuit which comprises a charge pump circuit and a multiplexer circuit. The charge pump circuit which includes at least one pumping switch, and is configured to operably periodically converts an input voltage to a pumped voltage onto a pump output node through the at least one pumping switch by charging and pumping, such that the pumped voltage has a scaling factor over the input voltage, wherein the at least one pumping switch has a bulk. The multiplexer circuit senses a predetermined voltage and the pumped voltage and selects one of the predetermined voltage and the pumped voltage which has a higher magnitude as a scaled output voltage at a scaled output node; wherein the bulk of the at least one pumping switch is biased to the scaled output voltage.
In one embodiment, a system includes one or more processors and logic integrated with and/or executable by the one or more processors. The logic is configured to cause at least one of the processors to detect positive peak amplitudes and negative peak amplitudes of an unequalized readback signal that exhibits imperfect or bi-modal waveform peaks using a peak tracking threshold module positioned at an input to an equalizer. Also, the logic is configured to cause the at least one of the processors to track the positive peak amplitudes and the negative peak amplitudes of the unequalized readback signal in a record. Moreover, the logic is configured to cause the at least one of the processors to provide, as an input to an asymmetry compensator, the record of the peak amplitudes and the negative peak amplitudes determined from the unequalized readback signal.
An information processing device includes: a data processing unit that executes a process of reproducing content recorded in a medium; and a memory storing a content revocation list in which an identifier (ID) of revoked content is recorded, wherein the data processing unit compares a minimum allowable version of a content revocation list recorded in a token which is management data corresponding to content recorded in the medium with a version of a content revocation list acquired from the memory, and when the version of the content revocation list acquired from the memory is an old version lower than the minimum allowable version of the content revocation list recorded in the token, the data processing unit halts determination on revocation of content based on the content revocation list acquired from the memory and reproduction of content.
According to one embodiment, a hard disk drive includes a disk including a plurality of data areas, and a plurality of servo areas between the plurality of data areas, an arm holding a write head and a read arm, and a positioning module which positions the read head or the write head by rotating the arm, wherein the positioning module positioning the write head by positioning the read head, and adjusting a position of the read head or the write head, based on an output of the read head located in a data area between two servo areas adjacent in a peripheral direction, of the plurality of servo areas.
A computer program product, according to one embodiment, includes a computer readable storage medium having program instructions embodied therewith. The computer readable storage medium is not a transitory signal per se. Moreover, the program instructions readable and/or executable by a controller to cause the controller to perform a method which includes: determining, by the controller, whether a difference between information and corresponding design values is in a range; and computing, by the controller and using the information, data describing a lateral writing position to use during writing such that shingled track edges are aligned according to a format in response to determining that the difference between the information and corresponding design values is not in the range. The information corresponds to how an array of writers write and/or are expected to write to a magnetic medium during shingled recording.
A conversation analysis device includes an utterance data acquisition unit that acquires utterance data representing a voice of each speaker and an utterance of the speaker, a speech state analysis unit that analyzes a speech state of each speaker on the basis of the voice, and a degree-of-contribution calculation unit that calculates a degree of contribution to the conversation of each speaker on the basis of the speech state.
Methods, apparatus, and computer-readable media are described herein related to a user interface (UI) that can be implemented on a head-mountable device (HMD). The UI can include a voice-navigable UI. The voice-navigable UI can include a voice navigable menu that includes one or more menu items. The voice-navigable UI can also present a first visible menu that includes at least a portion of the voice navigable menu. In response to a first utterance comprising one of the one or more menu items, the voice-navigable UI can modify the first visible menu to display one or more commands associated with the first menu item. In response to a second utterance comprising a first command, the voice-navigable UI can invoke the first command. In some embodiments, the voice-navigable UI can display a second visible menu, where the first command can be displayed above other menu items in the second visible menu.
Systems and methods for speech recognition incorporating environmental variables are provided. The systems and methods capture speech to be recognized. The speech is then recognized utilizing a variable component deep neural network (DNN). The variable component DNN processes the captured speech by incorporating an environment variable. The environment variable may be any variable that is dependent on environmental conditions or the relation of the user, the client device, and the environment. For example, the environment variable may be based on noise of the environment and represented as a signal-to-noise ratio. The variable component DNN may incorporate the environment variable in different ways. For instance, the environment variable may be incorporated into weighting matrices and biases of the DNN, the outputs of the hidden layers of the DNN, or the activation functions of the nodes of the DNN.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.