Iterative equalization using non-linear models in a soft-input soft-output trellis
Abstract:
A method includes: generating a trellis; generating one or more predicted symbols using a first non-linear model; computing and saving two or more branch metrics using a priori log-likelihood ratio (LLR) information, a channel observation, and the one or more predicted symbols; if alpha forward recursion has not yet completed, generating alpha forward recursion state metrics using a second non-linear model; if beta backward recursion has not yet completed, generating beta backward recursion state metrics using a third non-linear model; if sigma forward recursion has not yet completed, generating sigma forward recursion state metrics using the branch metrics, the alpha state metrics, and the beta backward recursion state metrics; generating extrinsic information comprising a difference of a posteriori LLR information and the a priori LLR information; computing and feeding back the a priori LLR information; and calculating the a posteriori LLR information.
Information query
Patent Agency Ranking
0/0