Numeric embeddings for entity-matching
Abstract:
Pairwise entity matching systems and methods are disclosed herein. A deep learning model may be used to match entities from separate data tables. Entities may be preprocessed to fuse textual and numeric data early in the neural network architecture. Numeric data may be represented as a vector of a geometrically progressing function. By fusing textual and numeric data, including dates, early in the neural network architecture the neural network may better learn the relationships between the numeric and textual data. Once preprocessed, the paired entities may be scored and matched using a neural network.
Public/Granted literature
Information query
Patent Agency Ranking
0/0