Abstract:
PROBLEM TO BE SOLVED: To provide improvements to an implant, a system and a method using a passive electrical conductor which routes an electrical current to either an external device or an implanted electrical device, to multiple target body tissues, and to selective target body tissues.SOLUTION: The passive electrical conductor extends from subcutaneous tissue located below either a surface cathodic electrode or a surface anodic electrode: (a) to the target tissues in order to route an electrical signal from the target body tissues to the device outside the body; (b) to the device in order to deliver the electrical current to the implanted electrical device; or (c) to the multiple target body tissues or to the selective target body tissues in order to stimulate the target body tissues. The conductor has specialized ends thereof for achieving such purposes.
Abstract:
In some embodiments, an apparatus includes a substantially rigid base and a flexible substrate. The substantially rigid base has a first protrusion and a second protrusion, and is configured to be coupled to an electronic device. The flexible substrate has a first surface and a second surface, and includes an electrical circuit configured to electronically couple the electronic device to at least one of an electrode a battery, or an antenna. The flexible substrate is coupled to the base such that a first portion of the second surface is in contact with the first protrusion. A second portion of the second surface is non-parallel to the first portion.
Abstract:
An apparatus including a substrate, a power source, a connector, electrical circuitry, and an electrode assembly. The power source has positive and negative terminals, each coupled to the substrate and is configured to provide power to an external stimulator coupled to the apparatus. The connector is disposed proximate to the first surface of the substrate, is electrically coupled to at least one of the positive and negative terminals of the power source and is configured to electrically couple the external stimulator to the power source. The electrical circuitry is coupled to the substrate and is configured to electrically couple the connector to at least one of the positive and negative terminals. The electrode assembly is coupled to the second surface of the substrate. At least one electrode of the electrode assembly is configured to contact bodily tissue and facilitate transmission of an electrical current through the bodily tissue.
Abstract:
An apparatus includes a first tubular member and a second tubular member coupled to the first tubular member. The first tubular member defines a longitudinal axis and a lumen substantially coaxial with the longitudinal axis. The lumen of the first tubular member is configured to receive at least a portion of an elongate implant. A distal end portion of the first tubular member is tapered along the longitudinal axis. The second tubular member defines a longitudinal axis and a lumen substantially coaxial with the longitudinal axis of the second tubular member. The second tubular member is coupled to the first tubular member such that the longitudinal axis of the first tubular member is substantially parallel to the longitudinal axis of the second tubular member. A distal end portion of the second tubular member is tapered along the longitudinal axis of the second tubular member.
Abstract:
An apparatus includes a power adapter having a housing and a circuit at least partially disposed in the housing. The housing is configured to be coupled to an implantable device for disposition in a body. The circuit is configured to be electrically connected to a power circuit of the implantable device when the housing is coupled to the implantable electrical conductor. When the housing is coupled to the implantable electrical conductor and implanted in a body, the circuit is configured to (1) receive, transcutaneously from a power supply, a first energy, (2) convert the first energy to a second energy, and (3) transfer, to the implantable device, the second energy such that the second energy powers the implantable device.
Abstract:
A body weight support system includes a support track configured to movably suspend a trolley therefrom. A power rail of the system is coupled to the support track and is in electrical contact with the trolley. A switch included in the system has a support track portion and a power rail portion. The switch is configured to transition between a first configuration, in which a first portion of the support track and the support track portion of the switch define a first path, and a second configuration, in which a second portion of the support track and the support track portion of the switch define a second path. The trolley is configured to receive a flow of electric power from at least one of the power rail or the power rail portion of the switch that is operable to move the trolley along the first path or the second path.
Abstract:
In one embodiment, a method includes implanting an implant entirely under the subject's skin. The implant includes a passive electrical conductor of sufficient length to extend from subcutaneous tissue located below one of a surface cathodic electrode and a surface anodic electrode to the tibial nerve. The surface electrodes are positioned in spaced relationship on the subject's skin, with one of the electrodes positioned over the pick-up end of the electrical conductor such that the portion of the current is transmitted through the conductor to the tibial nerve, and such that the current flows through the tibial nerve and returns to the other of the surface cathodic electrode and the surface anodic electrode. An electrical current is applied between the surface cathodic electrode and the surface anodic electrode to cause the portion of the electrical current to flow through the implant to stimulate the tibial nerve.
Abstract:
An apparatus includes a power adapter having a housing and a circuit at least partially disposed in the housing. The housing is configured to be coupled to an implantable device for disposition in a body. The circuit is configured to be electrically connected to a power circuit of the implantable device when the housing is coupled to the implantable electrical conductor. When the housing is coupled to the implantable electrical conductor and implanted in a body, the circuit is configured to (1) receive, transcutaneously from a power supply, a first energy, (2) convert the first energy to a second energy, and (3) transfer, to the implantable device, the second energy such that the second energy powers the implantable device.
Abstract:
The embodiments and methods described herein relate to an improved functional electrical stimulation (FES) orthosis. An apparatus can include a frame assembly, an electrode assembly, and an electric stimulator. The frame assembly is removably coupleable to a portion of a limb. The electrode assembly is configured to be in electrical communication with a portion of a neuromuscular system of the limb, and includes first and second sets of electrodes. The electric stimulator is in electrical communication with the electrode assembly. The electric stimulator is configured to send a first signal substantially during a first time period and via a first channel to the first set of electrodes for stimulation of a neuromuscular system of the limb, and is configured to send a second signal, during at least one of the first time period or a subsequent second time period, via a second channel to the second set of electrodes for stimulation of the neuromuscular system of the limb.