Abstract:
In a device (2) for determining the position (P 1 (X, y) ) of a touch on a contact surface (Ia) , a plurality of vibration sensors (4) are configured to detect mechanical vibrations (9) generated by the touch on the contact surface (1a) and to generate corresponding vibration signals, and a processing circuit (6) is connected to the vibration sensors (4) and is configured to determine the touch position (P 1 (x, y) ) via a time-of-f light algorithm, based on differences between times of detection (t 1 , t 2 , t 3 ) of the mechanical vibrations (9) by the vibration sensors (4) .
Abstract:
In a device (2) for determining the position (P 1 (x, y) ) of a touch on a contact surface (1a), a plurality of vibration sensors (4) are configured to detect mechanical vibrations (9) generated by the touch on the contact surface (1a) and to generate corresponding vibration signals, and a processing circuit (6) is connected to the vibration sensors (4) and is configured to determine the touch position (P 1 (x, y) ) via a time-of-f light algorithm, based on differences between times of detection (t 1 , t 2 , t 3 ) of the mechanical vibrations (9) by the vibration sensors (4).
Abstract:
In a device (2) for determining the position (P 1 (X, y) ) of a touch on a contact surface (Ia) , a plurality of vibration sensors (4) are configured to detect mechanical vibrations (9) generated by the touch on the contact surface (1a) and to generate corresponding vibration signals, and a processing circuit (6) is connected to the vibration sensors (4) and is configured to determine the touch position (P 1 (x, y) ) via a time-of-f light algorithm, based on differences between times of detection (t 1 , t 2 , t 3 ) of the mechanical vibrations (9) by the vibration sensors (4) .
Abstract:
A digital high-pass filter (12) has an input (IN), an output (OUT), and a subtractor stage (20), having a first input terminal, a second input terminal and an output terminal. The first input terminal of the subtractor stage (20) is connected to the input (IN) of the digital high-pass filter (12) and the output terminal is connected to the output (OUT) of the digital high-pass filter (12). A recursive circuit branch (21) is connected between the output (OUT) of the digital high-pass filter (12) and the second input terminal of the subtractor stage (20). Within the recursive circuit branch (21) are cascaded an accumulation stage (23), constituted by an integrator circuit, and a divider stage (24). The cutoff frequency (f t ) of the digital high-pass filter (12) is variable according to a dividing factor (den) of the divider stage (24).
Abstract:
A detection device for internal combustion engines exhaust gases post- treatment systems has a casing (2, 3) housing a circuit arrangement (21, 31) including humidity sensor means (32), for measuring the humidity of the gas. The circuit arrangement further comprises temperature sensor means (33) and pressure sensor means (22), for detecting a gas temperature value and a gas pressure value, respectively. The gas temperature value can be used for compensating the humidity value obtained through the humidity sensor means (32) and the pressure value can be used for deducing the clogging degree of a filter of the post-treatment system. Preferably the pressure sensor means (22) are housed in a first chamber (8) of the casing (2-3) while the humidity sensor means (32) and the temperature sensor means (33) are housed in a second chamber (10b) of the casing (2, 3).