Abstract:
Solid state processing is performed on a workpiece by using a tool capable of friction stir processing, friction stir mixing, or friction stir welding, wherein solid state processing modifies characteristics of a workpiece while substantially maintaining a solid phase in some embodiments, allowing some elements to pass through a liquid phase in other embodiments, and wherein modified characteristics of the material include, but are not limited to, microstructure, macrostructure, toughness, hardness, grain boundaries, grain size, the distribution of phases, ductility, superplasticity, change in nucleation site densities, compressibility, expandability, coefficient of friction, abrasion resistance, corrosion resistance, fatigue resistance, magnetic properties, strength, radiation absorption, and thermal conductivity.
Abstract:
A system and method for securely joining a high melting temperature material and a backing substrate using a mechanical connection includes a backing substrate integrally formed with a material positioned inside a dovetail recess in the high melting temperature material, mechanically fixing the backing substrate to the high melting temperature material without fusion or bonding of the microstructure.
Abstract:
A method of selecting a geometry for a friction stirring tool, said tool having a melting point that is higher than the workpiece material, wherein the tool is placed in motion against the workpiece to generate heat in the workpiece such that workpiece material is transported in surface features of the tool, and wherein surface features manage workpiece material flow around the tool, and wherein the tool can be used in friction stir processing, friction stir mixing, friction stir welding, and friction stir spot welding of high melting temperature materials or high softening temperature materials.
Abstract:
A friction stir tool is provided to perform friction stir riveting using a partially consumable pin, wherein the pin includes a cutting edge on a bottom surface thereof, wherein the tool is rotated at a first speed to enable cutting by the pin into a first material that is overlapping a second material, wherein after the pin has cut to a sufficient depth, the rotational speed of the tool is increased to thereby enable plasticization of the consumable pin, the first material, and the second material, wherein the tool is then rapidly decelerated until stopped, enabling diffusion bonding between the pin, the first material and the second material.
Abstract:
A mandrel that provides a counter-force to the pressure exerted on the outside of a pipe or other arcuate surface by a friction stir welding tool, wherein the mandrel is expandable through the use of a wedge, and wherein the mandrel enables multiple friction stir welding heads to simultaneously perform welding on the arcuate surface.
Abstract:
A system and method for friction stir processing of a hand-held cutting edge, wherein friction stir processing techniques are used to modify the properties of the hand-held cutting edge to obtain superior edge retention and superior resistance to chipping of the hand-held cutting edge.
Abstract:
The present invention relates to a method of joining segments of high melting temperature materials, that includes frictionally heating a first high melting temperature material and a second high melting temperature material wherein the first high melting temperature material and second high melting temperature material are welded together, without substantially changing the macrostructure and/or the microstructure of the first high melting temperature material and the second high melting temperature material, after application of a frictional force.
Abstract:
A cutting tool for woodworking applications has a cemented carbide substrate and a hard layer bonded to the substrate at high temperature and high pressure, i.e. where diamond or cubic boron nitride is thermodynamically stable. The hard layer comprises polycrystalline diamond and/or polycrystalline cubic boron nitride, and a catalyst cobalt phase including adjuvant alloying materials for providing oxidation and corrosion resistance. Typical alloying elements include nickel, aluminum, silicon, titanium, molybdenum and chromium. The hard layer has an as-sintered surface and is only about 0.3 mm thick. An additional secondary phase including a carbide, nitride, carbonitride or oxycarbonitride of metals such as titanium may also be present in the PCD or PCBN layer.
Abstract:
A system and method for using Friction Stir Spot Joining (FSSJ) to join workpieces made of Advanced High Strength Steels (AHSS), wherein a first embodiment is a FSSJ tool that has no surface features, and wherein the rate of rotation of the FSSJ tool is much higher than is used in other FSW techniques to thereby reduce torque by causing plasticization of the AHSS on a small scale, and in a second embodiment, conventional FSSJ tools can be used at conventional FSSJ speeds if the FSSJ tool is manufactured from conductive tool materials having a high hardness, and heating of the FSSJ tool and/or the workpieces enhances the ability of the FSSJ tool to functionally weld the AHSS.