Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
A method for a machine or group of machines to watermark an audio signal may include receiving the audio signal, receiving a watermark signal, creating a spectral well on the audio signal by removing a portion of the audio signal corresponding to a frequency range, and inserting the watermark signal in the spectral well.
Abstract:
Distributed audio mixing may include transmitting a set of parameters from a local location to one or more remote locations at least multiple miles away from the local location for, at each of the one or more remote locations, one or more remote audio sources to be processed according to the parameters to produce respective one or more remote audio mixes; processing one or more local audio sources according to the parameters to produce a local audio mix; receiving the one or more remote audio mixes; and locally summing the one or more remote audio mixes to the local audio mix to obtain a final audio mix.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract translation:用于为音频信号加水印的机器或一组机器的方法包括接收音频信号和包括多个符号的水印信号,并且将多个符号中的至少一些插入到 音频信号,每个频谱信道对应不同的频率范围。 通过考虑感知时间 - 频率掩蔽,水印消息的模式检测,最坏情况的节目内容的统计(例如语音)和类似言语的节目,设计的优化包括最小化感知水印信道的人类听觉系统。 p >
Abstract:
A method for a machine or group of machines to watermark an audio signal may include receiving the audio signal, receiving a watermark signal, creating a spectral well on the audio signal by removing a portion of the audio signal corresponding to a frequency range, and inserting the watermark signal in the spectral well.
Abstract:
A method to watermark an audio signal may include receiving watermark data payload information, converting the watermark data payload information into a watermark audio signal including one or more watermark messages corresponding to the watermark data payload information, and inserting the one or more watermark messages into multiple spectral channels of the audio signal, wherein each of the multiple spectral channels occupies a different frequency range, wherein bandwidth of a first spectral channel located in a first frequency region is smaller than bandwidth of a second spectral channel located in a second frequency region, and wherein bandwidth of a spectral channel, from the multiple spectral channels, is equal to a number divided by the time duration of a respective symbol, from the multiple symbols, in the spectral channel, wherein the number is in the range of 0.7 to 2.5.
Abstract:
A device for extracting a watermark signal from an output signal of a watermarking encoder includes an input configured to receive the input signal and the output signal. The device further includes an adjustment signal generator configured to generate a gain adjustment signal and a delay adjustment signal based on the input signal and the output signal, a gain and delay adjustor configured to adjust gain and delay of the output signal or the input signal based on the gain adjustment signal and the delay adjustment signal, respectively, to generate an adjusted output signal or an adjusted input signal, respectively, and an output configured to transmit a difference between the input signal and the adjusted output signal or a difference between the adjusted input signal and the output signal as the watermark signal.
Abstract:
Determining effect of changes in parameters may include, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods with the first parameter set to the first value sequenced with multiple second time periods with the first parameter set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
A method to watermark an audio signal may include receiving watermark data payload information, converting the watermark data payload information into a watermark audio signal including one or more watermark messages corresponding to the watermark data payload information, and inserting the one or more watermark messages into multiple spectral channels of the audio signal, wherein each of the multiple spectral channels occupies a different frequency range, wherein, once an audio segment has been inserted into a spectral channel of the audio signal, amplitude of the audio segment is held constant for the time duration of the audio segment such that a first portion of the audio segment is masked by the audio signal and a second portion of the audio segment is not masked by the audio signal.