Abstract:
This invention provides a curable composition, which comprises a RTV silicone and an uncrosslinked or partially crosslinked rubber and/or elastomer providing initial strength to the composition, wherein the ratio of the silicone to the rubber and/or elastomer ranges from 1:2 to 15:1 by weight. The curable composition has improved handling and application properties in addition to good thermal conductive performance, UV and thermal aging performance, electrical insulation performance, and adhesive performance.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
The present disclosure provides an elastomer composition, comprising, based on the total weight 100 wt. % of the elastomer composition: 1-50 wt. % of a modified ethylene propylene copolymer; 5-60 wt. % of a first silicone resin, the first silicone resin comprising at least one selected from the group consisting of the following: a hydroxyl-terminated silicone resin and an alkoxy-terminated silicone resin; 0.1-15 wt. % of a first crosslinking agent; 0.1-15 wt. % of a catalyst; and 10-85 wt. % of a filler. The elastomer composition provided by the present disclosure at least can be co-crosslinked in low temperature (approximately −20° C. to 60° C.) conditions. An elastomer prepared from the elastomer composition provided by the present disclosure has good mechanical properties and electrical insulation properties.
Abstract:
An electric power cable is provided, wherein the electric power cable comprises an organic silicon insulating coating layer capable of being cured at room temperature. Generally, the electric power cable comprises a cable conductor capable of transmitting electric energy, and the organic silicon insulating coating layer is coated to the exterior surface of the cable conductor. The cable conductor may be an exposed overhead bare conductive wire, and the organic silicon insulating coating layer is especially suitable for being formed on the exterior surface of the overhead bare conductive wire by coating directly thereto.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
An insulating composition comprises: about 70-100 parts by volume of a polymeric material, about 5-30 parts by volume of a ceramic filler (2) which is surface-treated by a bifunctional coupling agent in an amount of about 0.1 wt % to about 4 wt % of the ceramic filler; about 0.1-5 parts by volume of a crosslinking agent; about 0-6 parts by volume of conductive powder (3); and about 0-6 parts by volume of ZnO whisker (4). A preparation method for making the insulating composition, an insulating article such as an electrical cable accessory, and a use thereof are provided.
Abstract:
This invention provides a curable composition, which comprises a RTV silicone and an uncrosslinked or partially crosslinked rubber and/or elastomer providing initial strength to the composition, wherein the ratio of the silicone to the rubber and/or elastomer ranges from 1:2 to 15:1 by weight. The curable composition has improved handling and application properties in addition to good thermal conductive performance, UV and thermal aging performance, electrical insulation performance, and adhesive performance.
Abstract:
Disclosed is a moisture curable composition comprising a reactive or curable silicone; a crosslinker; an unreactive silicone; and at least of an initial strength-imparting agent and a plasticizer. The composition can have superior waterproofing property and weatherproofing property and allows easy installation on a substrate and easy peeling from the substrate.
Abstract:
A fluoropolymer coating composition comprises: fluorinated homopolymer particles dispersed in water, fluorinated copolymer particles dispersed in water, non-fluorinated polymer particles dispersed in water; and at least one aziridine compound comprising at least two aziridine groups. The composition is especially useful in low friction coating for telecommunication cables.
Abstract:
An electric power cable is provided, wherein the electric power cable comprises an organic silicon insulating coating layer capable of being cured at room temperature. Generally, the electric power cable comprises a cable conductor capable of transmitting electric energy, and the organic silicon insulating coating layer is coated to the exterior surface of the cable conductor. The cable conductor may be an exposed overhead bare conductive wire, and the organic silicon insulating coating layer is especially suitable for being formed on the exterior surface of the overhead bare conductive wire by coating directly thereto.