Abstract:
PROBLEM TO BE SOLVED: To provide: an immunogenic composition capable of high levels of immune responses immune-targeting glycolipid antigen Globo H, which is a tumor associated sugar chain; a cancer vaccine; and a method of treating cancer.SOLUTION: The invention relates to an immunogenic composition comprising: (a) a sugar chain such as Globo H or an immunogenic fragment thereof conjugated with a carrier protein comprising diphtheria toxin cross-reacting material 197 (DT-CRM 197) through a linker such as p-nitrophenol; and (b) an adjuvant with the following structure comprising a glycolipid capable of binding CD1d on a dendritic cell such as an α-galactosyl ceramide derivative.
Abstract:
Aluminum coated glass slides provide a novel glycan array platform. Specifically, aluminum coated glass slides increase sensitivity of fluorescent based assay methods. Additionally, aluminum coated glass slides allows for mass spectroscopic analysis of carbohydrates and provide a platform for examining activity of cellulases. The unique properties of ACG slides include: 1) the metal oxide layer on the surface can be activated for grafting organic compounds such as modified oligosaccharides; 2) the surface remains electrically conductive, and the grafted oligosaccharides can be simultaneously characterized by mass spectrometry and carbohydrate-binding assay; and 3) the slides are more sensitive than transparent glass slides in binding analysis.
Abstract:
Immunogenic compositions, cancer vaccines and methods for treating cancer comprising FMS, the fucose-enriched polysaccharide fraction from Reishi F3, are provided. Compositions comprise fucose-enriched Reishi polysaccharide fraction (FMS) MW = ~35kDa, wherein the FMS is isolated by size-exclusion chromatography from Reishi F3, and the FMS comprises polysaccharides having primarily a backbone selected from 1,4-mannan and 1,6-a-galactan, wherein the backbone is linked to a terminal fucose-containing side-chain. Immunogenic compositions comprising glycolipid adjuvants are provided. Antibodies generated by immunogenic compositions disclosed herein bind cancer cells comprising antigens Globo H, Globo H, Gb3, Gb4, Gb5 (SSEA-3) and SSEA-4 on the cell surface.
Abstract:
A method of treating coronavirus infection. The method includes administering to a subject suffering from or being at risk of suffering from such infection an effective amount of a compound of formula (I). Each variable in this formula is defined in the specification.
Abstract:
Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, and/or prostate cancer.
Abstract:
Abstract A novel UDP-Gal regeneration process and its combined use with a galactosyltransferease to add galactose to a suitable acceptor substrate. Also described herein are synthetic methods for generating Globo-series oligosaccharides in large scale, wherein the methods may involve the combination of a glycosyltransferase reaction and a nucleotide sugar regeneration process.
Abstract:
A mutant of EndoS2 includes one or more mutations in the sequence of a wild-type EndoS2 (SEQ ID NO: 1), wherein the one or more mutations are in a peptide region located within residues 133-143, residues 177-182, residues 184-189, residues 221-231, and/or residues 227-237, wherein the mutant of EndoS2 has a low hydrolyzing activity and a high tranglycosylation activity, as compared to those of the wild-type EndoS2. A method for preparing an engineered glycoprotein using the mutant of EndoS2 includes coupling an activated oligosaccharide to a glycoprotein acceptor. The activated oligosaccharide is a glycan oxazoline.
Abstract:
Abstract A novel UDP-Gal regeneration process and its combined use with a galactosyltransferease to add galactose to a suitable acceptor substrate. Also described herein are synthetic methods for generating Globo-series oligosaccharides in large scale, wherein the methods may involve the combination of a glycosyltransferase reaction and a nucleotide sugar regeneration process.