Abstract:
An electronic device may include a lenticular display. The lenticular display may have a lenticular lens film formed over an array of pixels. The lenticular lenses may be configured to enable stereoscopic viewing of the display such that a viewer perceives three-dimensional images. The display may have a number of independently controllable viewing zones. A eye and/or head tracking system may use a camera to capture images of a viewer of the display. Control circuitry in the electronic device may use the captured images from the eye and/or head tracking system to determine which viewing zones are occupied by the viewer's eyes. The control circuitry may disable or dim viewing zones that are not occupied by the viewer's eyes in order to conserve power. An unoccupied viewing zone and an adjacent, occupied viewing zone may display the same image to increase sharpness in the display.
Abstract:
An electronic device may be provided with a display. The display may include a backlight having an array of locally dimmable light sources. Control circuitry may provide control signals to the backlight to produce light at different brightness levels. When the brightness level is below a threshold, the control circuitry may use pulse-width-modulation control signals to control the light sources in the backlight. When the brightness level is above the brightness threshold, the control circuitry may use analog control signals to control the light sources in the backlight. The control circuitry may adjust the threshold to achieve different dimming ranges for different brightness settings. A low brightness setting, for example, may have a lower threshold and lower dimming range than a high brightness setting, which may help produce darker darks when the display operates in a low brightness setting.
Abstract:
A display may receive image data to be displayed for a user of an electronic device. Display driver circuitry in the display may include a timing controller that receives the image data. The timing controller can analyze frames of the image data to determine average luminance values for the frames. The display may include an array of organic light-emitting diode display pixels. Each display pixel may include a light-emitting diode. A transistor in each display pixel may be coupled in series with the light-emitting diode between positive and ground power supply terminals. The timing controller can limit peak luminance in the image data that is displayed on the array of display pixels as a function of average luminance. The timing controller can also direct power regulator circuitry to adjust a power supply voltage applied to the positive power supply terminal based on the average luminance.
Abstract:
The present disclosure relates to systems and methods to control brightness and color output in foldable displays (12). A foldable electronic display (12) may, when folded, include a first part (62) in a first plane and a second part (64) in a second plane different from the first plane. A brightness or color setting of the first part (62) may be controlled independently of a brightness or color setting of the second part (64). The first part (62) and the second part (64) may be foldable at a folding angle (270) with respect to one another. The processing circuitry may provide image data to the foldable electronic display (12) that varies based at least in part on the folding angle (270).
Abstract:
Embodiments related to an electronic device having an adaptive input row. The adaptive input row may be positioned within an opening of a device and include a cover for receiving a touch and a display that is configured to present an adaptable set of indicia. The adaptive input row may also include one or more sensors for detecting the location of a touch and/or the magnitude of a force of the touch. The adaptive input row may be positioned adjacent or proximate to a keyboard of the electronic device.
Abstract:
Embodiments related to an electronic device having an adaptive input row. The adaptive input row may be positioned within an opening of a device and include a cover for receiving a touch and a display that is configured to present an adaptable set of indicia. The adaptive input row may also include one or more sensors for detecting the location of a touch and/or the magnitude of a force of the touch. The adaptive input row may be positioned adjacent or proximate to a keyboard of the electronic device.