Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
A system, devices and methods for providing input from a user equipment (UE) for the selection of a carrier channel combination for use in carrier aggregation. The exemplary system includes a UE configured to perform carrier aggregation, the UE storing a radio frequency (RF) calibration table including a plurality of transmission related requirements specific to the UE, the UE configured to generate priority data for each carrier channel combination supported for use in carrier aggregation based upon the RF calibration table and a network component receiving the priority data and an indication from the UE, the network component configured to select a carrier channel combination for use in carrier aggregation based upon the priority data, the network component transmitting carrier aggregation configuration data including the selected carrier channel combination to the UE.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
Techniques are disclosed relating to broadcasting and receiving system information in a radio access network (RAN). In one embodiment, a base station includes at least one antenna, at least one radio, configured to perform cellular communication using a radio access technology (RAT), and one or more processors coupled to the radio. In this embodiment, the base station is configured to broadcast first system information blocks (SIBs) encoded using a first coding rate and a first identifier. In this embodiment, the base station is also configured to broadcast second SIBs encoded using a second coding rate that is lower than the first coding rate and a second identifier. In this embodiment, the second SIBs include only a portion of the information included in the first SIBs and the second SIBs are usable by user equipment devices (UEs) having a limited link budget to determine access parameters for the base station.
Abstract:
A base station and associated method transmits a page to a user equipment (UE) for a call establishment procedure, determines whether an acknowledgement is received in response to the page and when no acknowledgement has been received, determines a number of pages that have been transmitted to the UE for the call establishment procedure, transmits a further page to the UE for the call establishment procedure when the number of pages is less than a page threshold and performs a page failure procedure when the number of pages exceeds the page threshold. In another method the base station transmits a radio resource control (RRC) connection release message to the UE, maintains a context for the UE when an acknowledgement for the RRC connection release message is not received, transmits a first page and transmits a second page when a further acknowledgement for the first page is not received.
Abstract:
A user equipment (UE) configured to connect to a network and operate in a carrier aggregation mode and a single carrier mode performs methods to select optimal component carriers. The methods include determining that a primary component carrier is operating less optimally than a secondary component carrier, sending an indication to the network that the primary component carrier is operating less optimally than the secondary component carrier, acquiring the secondary component carrier as a target primary component carrier and operating with the secondary component carrier as the target primary carrier component. In one exemplary embodiment, the indication is declaring a radio link failure (“RLF”) between the UE and the network. In another exemplary embodiment, the indication is a measurement report send to the network that triggers a handover procedure for the UE.
Abstract:
A method performed by stations to transfer call sessions between different access networks. The methods include transmitting, by a first station to a second station, an invite to join a voice call on a first radio access network (RAN), receiving, by the second station, the invite, generating, by the second station, a response to the invite, determining, by the second station, that the response cannot be successfully transmitted to the first station, associating, by the second station, with a second RAN, generating, by the second station, a message indicating the second station has associated with the second RAN, transmitting, by the second station, the message to the first station, retransmitting, by the first station, the invite to join the voice call, receiving, by the second station, the invite on the second RAN and setting up the voice call between the first station and the second station.
Abstract:
User Equipment (UE) based forced inter radio access technology (iRAT) handover. A connection to a network may be established via a first cell operating according to a first radio access technology (RAT). It may be determined to initiate a handover of the UE from the first cell to a second cell operating according to a second RAT. An indication may be transmitted to the network to initiate a handover of the UE from the first cell to the second cell. An indication may be received from the network to perform handover of the UE from the first cell to the second cell in response to the indication to initiate the handover. Handover of the UE from the first cell to the second cell may be performed in response to the indication to perform the handover. Handover may include releasing the connection to the network via the first cell and establishing a connection to the network via the second cell.
Abstract:
A method for providing indication of an SRVCC handover is disclosed. The method can include a first wireless communication device participating in a voice call with a second wireless communication device via a connection between the first wireless communication device and a first network. The method can further include the first wireless communication device determining a condition indicative of an impending SRVCC handover of the first wireless communication device from the first network to a legacy network. In response to the condition, the method can additionally include the first wireless communication device formatting a message including an indication that the first wireless communication device is going to perform the SRVCC handover and sending the message to the second wireless communication device prior to performance of the SRVCC handover.
Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.