Abstract:
A camera module has an image sensor and a lens assembly that includes a lens barrel having a first cylindrical portion that includes an externally threaded portion and a second cylindrical portion that has a larger diameter than the externally threaded portion. A lens moving mechanism includes a movable sleeve having internal threads that receive the externally threaded portion of the lens assembly. The lens moving mechanism is coupled to the image sensor such that the second cylindrical portion of the lens assembly is closest to the image sensor. The camera module is assembled by inserting the lens assembly into the lens moving mechanism from the side closest to the image sensor. An installation tool may engage the second cylindrical portion to rotate the lens assembly and engage the threaded portions. Features may be provided to retain the lens assembly in the lens moving mechanism before joining the threaded portions.
Abstract:
Various embodiments include a camera with folded optics and lens shifting capabilities. Some embodiments include voice coil motor (VCM) actuator arrangements to provide autofocus (AF) and/or optical image stabilization (OIS) movement. Some embodiments include suspension arrangements.
Abstract:
Some embodiments include an image sensor and a zoom lens assembly including a plurality of movable lens elements arranged to be moved independent of one another. In some embodiments, the plurality of movable lens elements share an optical axis. Some embodiments include a lens and mirror assembly for admitting light to the miniature camera. The lens and mirror assembly includes a folded optics arrangement such that light enters the lens and mirror assembly through a first lens with an optical axis of the first lens orthogonal to the plurality of moveable lens elements. The lens and mirror assembly includes a mirror for folding the path of light from the optical axis of the first lens to the optical axis of the plurality of movable lens elements, and the lens and mirror assembly further includes an actuator for tilting the mirror.
Abstract:
An apparatus comprises a fingerprint sensor having a set of capacitive elements configured for capacitively coupling to a user fingerprint. The fingerprint sensor may be disposed under a control button or display element of an electronic device, for example one or more of a control button and a display component. A responsive element is responsive to proximity of the user fingerprint, for example one or both of a first circuit responsive to motion of the control button, and a second circuit responsive to a coupling between the fingerprint and a surface of the display element. The fingerprint sensor is disposed closer to the fingerprint than the responsive element. The control button or display component may include an anisotropic dielectric material, for example sapphire.
Abstract:
A digital camera component is described that has a light splitter cube having an entrance face to receive incident light from a camera scene. The cube splits the incident light into first, second, and third color components that emerge from the cube through a first face, a second face, and a third face of the cube, respectively. First, second, and third image sensors are provided, each being positioned to receive a respective one of the color components that emerge from the first, second, and third faces of the cube. Other embodiments are also described and claimed.
Abstract:
A hybrid sensor shift platform for an optical image stabilization (OIS) actuator mechanism in compact camera modules includes two or more substrates. A top substrate is composed of an organic material (e.g., a resin) to reduce mass, reduce magnetic interaction with permanent magnets, and improve reliability. One or more lower substrates of the hybrid sensor shift platform are ceramic substrates that provide the benefits of ceramics for connection to the image sensor. The organic substrate is connected via a solder bond process to the lower ceramic substrate(s). The connection between the substrates is reinforced with an under-fill of epoxy that surrounds the solder bonds, thus creating a full interface between the substrates within the overlap.
Abstract:
A camera module includes a lens barrel holder and a substrate. The substrate may include a circuit board embedded in the substrate. The circuit board may include multiple electrical components mounted to a first side of the circuit board, where the electrical components are not exposed outside. The circuit board may also include multiple electrical connections on another side of the circuit board, an image sensor mounted to the electrical connections, and an upper opening in the circuit board for light to pass through. The substrate may include an upper opening configured to receive, at least partially inside the substrate, a lower portion of the lens barrel holder. The substrate may include a lower opening connected to the upper opening and configured to receive the image sensor. The lens barrel holder may include extensions, such as a flange or tabs, and an adhesive bond between the extensions and the substrate.
Abstract:
Various embodiments include a camera with folded optics and lens shifting capabilities. Some embodiments include voice coil motor (VCM) actuator arrangements to provide autofocus (AF) and/or optical image stabilization (OIS) movement. Some embodiments include suspension arrangements.
Abstract:
An assembly for an electronic device (100), comprising a device housing (106) including an opening (108), a fingerprint sensor (102), plastic molded above the fingerprint sensor, the plastic defining a button structure (104) disposed to fit in the opening, a switch (118) stacked vertically below the fingerprint sensor; and a support plate (122) positioned between the fingerprint sensor (102) and the switch (118).