Abstract:
Provided is a process of selecting a measurement location, the process including: obtaining pattern data describing a pattern to be applied to substrates in a patterning process; obtaining a process characteristic measured during or following processing of a substrate, the process characteristic characterizing the processing of the substrate; determining a simulated result of the patterning process based on the pattern data and the process characteristic; and selecting a measurement location for the substrate based on the simulated result.
Abstract:
A process of selecting a measurement location, the process including: obtaining pattern data describing a pattern to be applied to substrates in a patterning process; obtaining a process characteristic measured during or following processing of a substrate, the process characteristic characterizing the processing of the substrate; determining a simulated result of the patterning process based on the pattern data and the process characteristic; and selecting a measurement location for the substrate based on the simulated result.
Abstract:
Disclosed is a substrate and associated patterning device. The substrate comprises at least one target arrangement suitable for metrology of a lithographic process, the target arrangement comprising at least one pair of similar target regions which are arranged such that the target arrangement is, or at least the target regions for measurement in a single direction together are, centrosymmetric. A metrology method is also disclosed for measuring the substrate. A metrology method is also disclosed comprising which comprises measuring such a target arrangement and determining a value for a parameter of interest from the scattered radiation, while correcting for distortion of the metrology apparatus used.
Abstract:
A method including computing, in accordance with one or more parameters of a substrate measurement recipe, measurement with a latent image of a target and measurement with a post- development image corresponding to the latent image, to evaluate a characteristic determined from the computed measurement with the latent image of the target and determined from the computed measurement with the post-development image corresponding to the latent image; and adjusting the one or more parameters of the substrate measurement recipe and re-performing the computing, until a certain termination condition is satisfied with respect to the characteristic,
Abstract:
Disclosed is a method of determining a correction for measured values of radiation diffracted from a target comprising a plurality of periodic structures, subsequent to measurement of the target using measurement radiation defining a measurement field. The correction acts to correct for measurement field location dependence in the measured values. The method comprises performing a first and second measurements of the periodic structures; and determining a correction from said first measurement and said second measurement. The first measurement is performed with said target being in a normal measurement location with respect to the measurement field. The second measurement is performed with the periodic structure in a shifted location with respect to the measurement field, said shifted location comprising the location of another of said periodic structures when said target is in said normal measurement location with respect to the measurement field.
Abstract:
A method for improving imaging of a feature on a mask to a substrate during scanning operation of a lithographic apparatus. The method includes obtaining a dynamic pupil representing evolution of an angular distribution of radiation exposing a mask during a scanning operation of a lithographic apparatus and determining a variation of shift of a feature at a substrate during the scanning operation due to interaction of the dynamic pupil with the mask. The method includes configuring a mask parameter and/or or a control parameter of the lithographic apparatus to reduce the variation of shift of the feature.
Abstract:
A process of selecting a measurement location, the process including: obtaining pattern data describing a pattern to be applied to substrates in a patterning process; obtaining a process characteristic measured during or following processing of a substrate, the process characteristic characterizing the processing of the substrate; determining a simulated result of the patterning process based on the pattern data and the process characteristic; and selecting a measurement location for the substrate based on the simulated result.
Abstract:
Disclosed is a process monitoring method, and an associated metrology apparatus. The method comprises: obtaining measured target response sequence data relating to a measurement response of a target formed on a substrate by a lithographic process to measurement radiation comprising multiple measurement profiles, wherein the measured target response sequence data describes a variation of the measurement response of the target in response to variations of the measurement profiles; obtaining reference target response sequence data relating to a measurement response of the target as designed to the measurement radiation, wherein the reference target response sequence data describes an optimal measurement response of the target in response to designed measurement profiles without un-designed variation; comparing the measured target response sequence data and the reference target response sequence data; and determining values for variations in stack parameters of the target from the measured target response sequence data based on the comparison.