Abstract:
A conductive ink may include an ultraviolet-curable resin and high-aspect-ratio conductors, such as nanowires or carbon nanotubes, dispersed in the ultraviolet-curable resin. The conductive ink may be fully curable at room temperature in under a minute with a curing depth of at least 100 microns, without heat, moisture, or a secondary curing step. The conductive ink may also have pigment and/or dyes within the ultraviolet-curable resin, and the conductive ink may be opaque at infrared wavelengths and transparent at ultraviolet wavelengths. The conductive ink may ground the cover glass of an electronic device display to a metal structure within the electronic device, such as a metal plate of the display, to prevent an accumulation of charge at the cover glass.
Abstract:
An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
Abstract:
A sensor module can include a sensor that is configured to detect any given input or environmental conditions, such as, for example, touch or force inputs. The sensor module can be included in an electronic device. Methods for producing the sensor module are disclosed.
Abstract:
An electronic device configured to provide localized haptic feedback to a user on one or more regions or sections of a surface of the electronic device. A support structure is positioned below the surface, and one or more haptic actuators are coupled to the support structure. In some examples, the support structure is shaped or configured to amplify a response to a haptic actuator. When a haptic actuator is actuated, the support structure deflects, which causes the surface to bend or deflect at a location that substantially corresponds to the location of the activated haptic actuator. In some examples, prior to providing haptic feedback, at least one haptic actuator is electrically pre-stressed to place the haptic actuator(s) in a pre-stressed state. When haptic feedback is to be provided, at least one haptic actuator transitions from the pre-stressed state to a haptic output state to produce one or more deflections in the surface. In other examples, a haptic structure incorporates a piezoelectric element that is shaped to reduce the overall cost of the haptic structure while still providing high actuation performance.
Abstract:
Structures in an electronic device such as substrates associated with a display may be bonded together using liquid adhesive. Fiber-based equipment may be used to apply ultraviolet light to peripheral edges of an adhesive layer during bonding. There-dimensional adhesive shapes may be produced using nozzles with adjustable openings, computer-controlled positioners, and other adhesive dispensing equipment. Ultraviolet light may be applied to liquid adhesive through a mask with an opacity gradient. Adjustable shutter structures may control adhesive exposure to ultraviolet light. Ultraviolet light exposure may be used to create an adhesive dam that helps create a well defined adhesive border. Multiple layers of adhesive may be applied between a pair of substrates.
Abstract:
In some embodiments, a haptic actuator includes piezoelectric material and a pattern of voltage electrodes coupled to a surface of the piezoelectric material. The voltage electrodes are individually controllable to supply voltage to different portions of the piezoelectric material. Different sections of the piezoelectric material are operable to deflect, producing haptic output at those locations, in response to the application of the voltage. Differing voltages may be provided to one or more of the voltage electrodes to affect the location of the deflection, and thus the haptic output. In various embodiments, a haptic output system incorporates a sealed haptic element. The sealed haptic element includes a piezoelectric component that is coupled to one or more flexes and is sealed and/or enclosed by the flex(es) and an encapsulation or sealing material.
Abstract:
A sensor includes a patterned compliant layer positioned between two substrates. Each substrate can include one or more conductive electrodes, with each electrode of one substrate paired with a respective electrode of the other substrate. Each pair of conductive electrodes forms a capacitor. Several methods are disclosed that can be used to produce the patterned compliant layer.
Abstract:
An electronic device such as a device with a display may have a force sensor. The force sensor may include capacitive electrodes separated by a deformable layer such as a layer of an elastomeric polymer. The display or other layers in the electronic device may deform inwardly under applied force from a finger of a user or other external object. As the deformed layers contact the deformable layer, the deformable layer is compressed and the spacing between the capacitive electrodes of the force sensor decreases. This causes a measurable rise in the capacitance signal and therefore the force signal output of the force sensor. To prevent the deformable layer from sticking to the inner surface of the display layers, air flow promotion structures may be interposed between the deformable layer and the inner surface of the display. The air flow promotion structures may include spacer pads with anti-stick surfaces.
Abstract:
Conductive traces may be conformally wrapped around the side of a display panel that includes an array of display pixels. The conductive traces may electrically connect contacts on an upper surface of the display panel to corresponding contacts on a flexible printed circuit that is attached to a lower surface of the display panel. The side-wrapped conductive traces may be interposed between first and second insulating layers. The flexible printed circuit may have a multi-step interface that is electrically connected to the side-wrapped conductive traces. A system-in-package including a display driver integrated circuit may be mounted to the flexible printed circuit. The system-in-package may include a plurality of redistribution layers that electrically connect contacts on the display driver integrated circuit to contacts on the flexible printed circuit.
Abstract:
A sensor module can include a sensor that is configured to detect any given input or environmental conditions, such as, for example, touch or force inputs. The sensor module can be included in an electronic device. Methods for producing the sensor module are disclosed.