Abstract:
Display structures and methods of manufacture of display structure including a display panel with a curved three-dimensional film contour are described. In an embodiment, a display panel includes display area with a main body area and a plurality of petals extending from the main body area. The petals are folded into a curved three-dimensional (3D) film contour, and are separated by corresponding trenches between petals. The trenches may be filled with various seam hiding materials to visually obscure the trenches.
Abstract:
An electronic device may have a housing with a display. A protective display cover layer for the display may have an image transport layer such as an image transport layer formed from Anderson localization material. Anderson localization material may be formed using equipment such as heated molds, extrusion equipment, fusion tools, and fiber drawing equipment. The materials used to form a block of Anderson localization material may be polymers or other transparent materials. Elevated temperatures such as temperatures above the melting points of the polymers may be used during extrusion, fusion, drawing, and other operations.
Abstract:
An electronic device may have a housing with a display. A protective display cover layer for the display may have an image transport layer such as a fiber optic plate. The fiber optic plate may be formed from fibers. An extruder may form fiber bundles that each include a respective plurality of fibers distributed in binder material. The fiber bundles from the extruder may be fed directly to a block forming die. The block forming die may receive the fiber bundles from the extruder and output a unitary fiber block. The fiber bundles may remain heated in the block forming die such that the binder material of the fiber bundles seamlessly merges during formation of the unitary fiber block. A cutter can be used to cut off a layer of the unitary fiber block. This layer may be machined and polished to form the fiber optic plate.
Abstract:
A force input sensor includes a load cell to adapt a compressive force applied to the force input sensor into a strain experienced by a strain sensor in the load cell. In particular, the load cell includes two compression plates separated from one another by a gap so as to define a volume between them. A flexible substrate (a “diaphragm”)—includes a strain sensor and is disposed and supported within the volume. One of the two compression plates includes a feature (a “loading feature”) that extends toward a central region of the flexible substrate. As a result of this construction, when the compression plates receive a compressive force, the loading feature induces a bending moment in the flexible substrate, thereby straining the strain sensor.
Abstract:
In some embodiments, a haptic actuator includes piezoelectric material and a pattern of voltage electrodes coupled to a surface of the piezoelectric material. The voltage electrodes are individually controllable to supply voltage to different portions of the piezoelectric material. Different sections of the piezoelectric material are operable to deflect, producing haptic output at those locations, in response to the application of the voltage. Differing voltages may be provided to one or more of the voltage electrodes to affect the location of the deflection, and thus the haptic output. In various embodiments, a haptic output system incorporates a sealed haptic element. The sealed haptic element includes a piezoelectric component that is coupled to one or more flexes and is sealed and/or enclosed by the flex(es) and an encapsulation or sealing material.
Abstract:
An electronic device may have layers of glass for forming components such as a display. A display cover glass layer may overlap an array of pixels. A touch sensor may be formed under the display cover glass layer. Conductive structures such as transparent conductive electrodes or other conductive layers of material may be formed on the outer surface of the display cover glass layer. The electrodes on the outer surface of the display cover glass layer may be coupled to metal contacts and other circuitry on the inner surface of the display cover glass layer using conductive vias. Vias may be provided with barrier layers, opaque coatings, tapers, and other structures and may be formed using techniques that enhance compatibility with chemical strengthening processes.
Abstract:
An electronic device such as a device with a display may have a force sensor. The force sensor may include capacitive electrodes separated by a deformable layer such as a layer of an elastomeric polymer. The display or other layers in the electronic device may deform inwardly under applied force from a finger of a user or other external object. As the deformed layers contact the deformable layer, the deformable layer is compressed and the spacing between the capacitive electrodes of the force sensor decreases. This causes a measurable rise in the capacitance signal and therefore the force signal output of the force sensor. To prevent the deformable layer from sticking to the inner surface of the display layers, air flow promotion structures may be interposed between the deformable layer and the inner surface of the display. The air flow promotion structures may include spacer pads with anti-stick surfaces.
Abstract:
An electronic device may have optical components that each have first and second transparent layers such as first and second glass layers. The glass layers may have outer surfaces that face away from each other and inner surfaces that face towards each other. A polymer layer is formed between the inner surfaces of the glass layers. Along the periphery of each optical component, a hermetic seal is formed to protect the polymer material of the polymer layer. The seal may include one or more metal layers that are coupled to the first and second glass layers. For example, glass prism rings may be coupled to the first and second glass layers and metal may be coupled to the prism rings. The one or more metal layers may then be bonded to the metal on the prism rings, such as through soldering.
Abstract:
A light pipe such as a fiber ribbon may be formed from fibers joined by binder such as extruded binder. The fiber ribbon or other light pipe may have bends. A light source may provide light to an input of a fiber ribbon that is guided by the fiber ribbon to a corresponding output. The output may be located in an interior portion of an electronic device or may be positioned so that light from the output exits the electronic device and illuminates external objects. The light source may have light-emitting devices on a substrate. The light-emitting devices may be vertical cavity surface-emitting laser diodes or other lasers and/or may be light-emitting diodes. Light-emitting devices may be arranged in discrete clusters corresponding to the locations of fiber cores in the fiber ribbon.
Abstract:
A two dimensional touch sensor panel can be thermoformed or curved by another process to a three-dimensional touch sensor panel, and the three-dimensional touch sensor panel can be laminated to a three-dimension surface having a highly curved or spherical shape. In some examples, thermoforming a two-dimensional touch sensor panel into a three-dimensional touch sensor panel can result in strain of the touch electrodes, and can result in non-uniform three-dimensional touch electrodes (distortion of the two-dimensional touch electrode pattern). The strain can be a function of the curved touch-sensitive surface and/or process related mechanical strain from thermoforming. In some examples, a three-dimensional touch sensor panel can be formed with uniform area touch electrodes using a two-dimensional touch sensor panel pattern with non-uniform area touch electrodes in accordance with the strain pattern expected for a given curved surface and thermoforming technique.