Abstract:
A process for the oxidative dehydrogenation of n-butenes to butadiene is disclosed herein, in which the formation of butadiene peroxides from butadiene in the work-up of the product gas mixture from the oxidative dehydrogenation is effectively prevented.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, comprising a support substrate and a layer applied to the substrate, wherein the layer comprises one or more zeolites of the MFI, MEL and/or MWW structure type, the one or more zeolites comprising one or more alkaline earth metals, to the preparation and use thereof, and to a process for converting oxygenates to olefins using the catalyst.
Abstract:
A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s). The catalytically active zone(s), mixing zone, independently regulable feed line(s), and distributor(s), may be designed as one component which can individually be mounted and removed.
Abstract:
The invention relates to a process for preparing butadiene from n-butenes, which comprises the following steps: A) provision of a feed gas stream a comprising n-butenes; B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into at least one dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b in at least one compression stage, giving at least one condensate stream c1 comprising water and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by Da) absorption of the C4-hydrocarbons comprising butadiene and n-butenes in a high-boiling absorption medium, giving an absorption medium stream loaded with C4-hydrocarbons and the gas stream d2, Db) removal of oxygen from the absorption medium stream loaded with C4-hydrocarbons by stripping with an inert gas and Dc) desorption of the C4-hydrocarbons from the loaded absorption medium stream to give a C4 product gas stream d1 which consists essentially of C4-hydrocarbons and comprises less than 100 ppm of oxygen; E) separation of the C4 product stream d1 by extractive distillation with a solvent which is selective for butadiene into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distillation of the stream e1 comprising butadiene and the selective solvent to give a stream f1 consisting essentially of the selective solvent and a butadiene-comprising stream f2.
Abstract:
The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
Abstract:
The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
Abstract:
A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s). The catalytically active zone(s), mixing zone, independently regulable feed line(s), and distributor(s), may be designed as one component which can individually be mounted and removed.
Abstract:
The present invention relates to a process for converting oxygenates to olefins, comprising (1) providing a gas stream comprising one or more ethers; (2) contacting the gas stream provided in (1) with a catalyst, the catalyst comprising a support substrate and a layer applied to the substrate, the layer comprising one or more zeolites of the MFI, MEL and/or MWW structure type.
Abstract:
A method for producing ethylene and/or other olefins by steam cracking includes charging one or more crackers with a paraffin-containing feed and withdrawing a crude gas from the one or more crackers. The crude gas is subjected at least in part to a treatment comprising a crude gas compression and a thermal separation using a C2 refrigerant and a C3 refrigerant. A crude gas compressor is used for the crude gas compression, wherein the ethylene refrigerant is compressed using a C2 refrigerant compressor. The propylene refrigerant is compressed using a C3 refrigerant compressor. The crude gas compressor comprises two serial compressor trains. The compressor trains, the C2 refrigerant compressor and the C3 refrigerant compressor are each operated at least in part using electrical drives, which have at least partially identical performance features, are provided as structurally identical variable-speed drives, and are each fed via frequency converters.
Abstract:
A process for producing biohydrocarbons, comprising the steps ofa) total hydrogenation of animal and/or vegetable oils, fats or mixtures thereof, forming propane from the glycerol component of the oils, fats or mixtures thereof and the corresponding alkanes from the fatty acid component of the oils, fats or mixtures thereof,b) cracking the hydrocarbons obtained in step a) by thermal cracking, catalytic cracking or hydrocracking to form the biohydrocarbons.