Abstract:
The invention relates to a process for preparing propylene oxide, comprising (i) providing a stream comprising propene, propane, hydrogen peroxide or a source of hydrogen peroxide, water, and an organic solvent; (ii) passing the liquid feed stream provided in (i) into an epoxidation zone comprising an epoxidation catalyst comprising a titanium zeolite, and subjecting the liquid feed stream to epoxidation reaction conditions in the epoxidation zone, obtaining a reaction mixture comprising propene, propane, propylene oxide, water, and the organic solvent; (iii) removing an effluent stream from the epoxidation zone, the effluent stream comprising propene, propane, propylene oxide, water, and the organic solvent; (iv) separating propene and propane from the effluent stream by distillation, comprising subjecting the effluent stream to distillation conditions in a distillation unit, obtaining a gaseous stream (S1) which is enriched in propene and propane compared to the effluent stream subjected to distillation conditions, and a liquid bottoms stream (S2) which is enriched in propylene oxide, water and organic solvent compared to the effluent stream subjected to distillation conditions; (v) separating propane from the stream (S1) in a separation zone, comprising subjecting the stream (S1) to washing conditions in a scrubber, wherein a solvent mixture comprising organic solvent and water is added as entraining agent, obtaining a bottoms stream (S3), which comprises organic solvent, water and at least 70 weight-% of the propene comprised in (S1); and a gaseous top stream (S4), which comprises at least 5 weight-% of the propane comprised in stream (S1).
Abstract:
Disclosed is a process for purifying propylene oxide. A stream S0 containing propylene oxide, acetonitrile, water, and an organic compound containing one or more of acetone and propionaldehyde is provided. Propylene oxide is separated from S0 by subjecting S0 to distillation in a first distillation unit, obtaining a gaseous top stream S1c enriched in propylene oxide, a liquid bottom stream S1a enriched in acetonitrile and water, and a side stream S1b containing propylene oxide and enriched in the carbonyl compound; reacting the carbonyl compound in S1b with an organic compound containing an amino group to obtain a reaction product; separating propylene oxide from the reaction product in a second distillation unit, obtaining a gaseous top stream S3a enriched in propylene oxide and a liquid bottoms stream S3b enriched in the reaction product; and introducing stream S3a into the first distillation unit.
Abstract:
A process for the oxidative dehydrogenation of n-butenes to butadiene is disclosed herein, in which the formation of butadiene peroxides from butadiene in the work-up of the product gas mixture from the oxidative dehydrogenation is effectively prevented.
Abstract:
The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
Abstract:
The invention relates to a process for preparing butadiene from n-butenes, which comprises the following steps: A) provision of a feed gas stream a comprising n-butenes; B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into at least one dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b in at least one compression stage, giving at least one condensate stream c1 comprising water and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by Da) absorption of the C4-hydrocarbons comprising butadiene and n-butenes in a high-boiling absorption medium, giving an absorption medium stream loaded with C4-hydrocarbons and the gas stream d2, Db) removal of oxygen from the absorption medium stream loaded with C4-hydrocarbons by stripping with an inert gas and Dc) desorption of the C4-hydrocarbons from the loaded absorption medium stream to give a C4 product gas stream d1 which consists essentially of C4-hydrocarbons and comprises less than 100 ppm of oxygen; E) separation of the C4 product stream d1 by extractive distillation with a solvent which is selective for butadiene into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distillation of the stream e1 comprising butadiene and the selective solvent to give a stream f1 consisting essentially of the selective solvent and a butadiene-comprising stream f2.
Abstract:
The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
Abstract:
A process for preparing an extrudable composition comprising a titanium-containing zeolitic material having framework type MWW, the process comprising providing a titanium-containing zeolitic material having framework type MWW, having a water absorption capacity of at least 11 weight-%, subjecting the titanium-containing zeolitic material having framework type MWW an acid treatment, optionally incorporating zinc in the acid-treated titanium-containing zeolitic material having framework type MWW; preparing a composition comprising the titanium-containing zeolitic material having framework type MWW obtained from (ii) or (iii), a precursor of a silica binder, water, and a kneading agent, wherein the composition does not comprise a polyethylene oxide.
Abstract:
A process for preparing a molding comprising zinc and a titanium-containing zeolitic material having framework type MWW, comprising (i) providing a molding comprising a titanium-containing zeolitic material having framework type MWW; (ii) preparing an aqueous suspension comprising a zinc source and the molding comprising a titanium-containing zeolitic material having framework type MWW prepared in (i); (iii) heating the aqueous suspension prepared in (ii) under autogenous pressure to a temperature of the liquid phase of the aqueous suspension in the range of from 100 to 200° C., obtaining an aqueous suspension comprising a molding comprising zinc and a titanium-containing zeolitic material having framework type MWW; (iv) separating the molding comprising zinc and a titanium-containing zeolitic material having framework type MWW from the liquid phase of the suspension obtained in (iii).
Abstract:
Disclosed herein is a process for purifying propylene oxide, including the steps of: (i) providing a stream S0 containing propylene oxide, acetonitrile, water, and an organic compound containing a carbonyl group —C(═O)—; and (ii) separating propylene oxide from the stream S0 by subjecting the stream S0 to distillation conditions in a distillation column to obtain a gaseous top stream S1c which is enriched in propylene oxide compared to the stream S0, a liquid bottoms stream S1a which is enriched in acetonitrile and water compared to the stream S0, and a side stream S1b containing propylene oxide which is enriched in the carbonyl compound compared to the stream S0.
Abstract:
A continuous process for the preparation of propylene oxide, comprising a start-up stage and normal run stage, wherein the normal run stage comprises (i) continuously providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, a formate salt, water and optionally propane, wherein in the liquid feed stream, the molar amount of the formate salt relative to the molar amount of hydrogen peroxide at a given point of time during the normal run stage is aN(Fo/H2O2); (ii) continuously passing the liquid feed stream provided in (i) into an epoxidation zone comprising a catalyst comprising a titanium zeolite having framework type MWW, and subjecting the liquid feed stream to epoxidation reaction conditions in the epoxidation zone, obtaining a reaction mixture comprising propylene oxide, acetonitrile, water, the formate salt, optionally propene, and optionally propane; (iii) continuously removing an effluent stream from the epoxidation zone, the effluent stream comprising propylene oxide, acetonitrile, water, at least a portion of the formate salt, optionally propene, and optionally propane; wherein the normal run stage is characterized in an average rate of change of aN(Fo/H2O2) of less than 0 h−1.