Abstract:
A system and method to distinguish normal cells from apoptotic cells. A pre-determined vector space is selected where the vector space mathematically describes a first plurality of reference Raman data sets for normal cells and a second plurality of reference Raman data sets for apoptotic cells. A sample is irradiated with substantially monochromatic light generating a target Raman data set based on scattered photons. The target Raman data set is transformed into a vector space defined by the pre-determined vector space. A distribution of transformed data is analyzed in the pre-determined vector space. Based on the analysis, the sample is classified as containing normal cells, apoptotic cells, and a combination of normal and apoptotic cells. The sample includes the step of treating the sample with a pharmaceutical agent prior to irradiating the sample. Based on the classification, the therapeutic efficiency of the pharmaceutical agent is assessed.
Abstract:
In one embodiment, the disclosure relates to a method for determining illumination parameters for a stained sample, the method may include providi ng a stained sample and obtaining an absorption band of the sample; obtaining a n emission band of the sample and determining the illumination parameters for the sample as a function of the absorption band and the emission band of the sample.
Abstract:
In one embodiment, the disclosure relates to a method for determining illumination parameters for a stained sample, the method may include providing a stained sample and obtaining an absorption band of the sample; obtaining an emission band of the sample and determining the illumination parameters for the sample as a function of the absorption band and the emission band of the sample.
Abstract:
A system and method to predict the progression of disease of a test sample is provided A group of known biological samples is provided, each having an associated known outcome including a non-diseased or diseased sample. A Raman data set is obtained for each known biological sample. Each data set is analyzed to identify a diseased or non-diseased reference data set. A first database is generated which contains reference Raman data sets for all diseased samples. A second-database is generated which contains reference data sets for all non-diseased samples. A test Raman data set of a test biological sample having an unknown disease status is received. A diagnostic is provided as to whether the test sample is non-diseased or diseased The diagnostic is obtained by comparing the test data set against the reference data sets in the databases using a chemometric technique to predict the progression of disease.
Abstract:
A system and method to predict the progression of disease of a test sample. A group of known biological samples is provided. Each known biological sample has an associated known outcome including a non-diseased sample or a diseased sample. A Raman data set is obtained for each known biological sample. Each Raman data set is analyzed to identify a diseased or non-diseased reference Raman data set depending on whether respective biological sample is the non-diseased sample or the diseased sample. A first database is generated where the first database contains reference Raman data sets for all diseased samples. A second database is generated where the second database contains reference Raman data sets for all non-diseased samples. A test Raman data set of a test biological sample is received, where the test biological sample has an unknown disease status. A diagnostic is provided as to whether the test sample is a non-diseased sample or a diseased sample. The diagnostic is obtained by comparing the test Raman data set against the reference Raman data sets in the first and the second databases using a chemometric technique. A prediction of the progression of disease may be then provided.