Abstract:
A method and apparatus for imaging biological objects. A SERS surface is provided having enhancing structures uniformly distributed on the surface. T he surface includes a two dimensional area of at least 5 x 105 nm. The enhancin g structures may have a size, in at least one dimension of height, width and length, ranging from 100 nm to 1000 nm. A biological material is deposited o n the SERS surface. The biological material on the SERS surface is illuminated using a monochromatic light source producing Raman scattered photons. The Raman scattered photons are filtered using a tunable filter into a plurality of predetermined wavelength bands. A two-dimensional array detector detects the filtered Raman scattered photons, in a spatially accurate manner. The results of filtering and detecting steps are combined to produce a plurality of spectrally resolved Raman images of the biological material.
Abstract:
A method and apparatus for imaging biological objects. A SERS surface is provided having enhancing structures uniformly distributed on the surface. The surface includes a two dimensional area of at least 5 x 105 nm. The enhancing structures may have a size, in at least one dimension of height, width and length, ranging from 100 nm to 1000 nm. A biological material is deposited on the SERS surface. The biological material on the SERS surface is illuminated using a monochromatic light source producing Raman scattered photons. The Raman scattered photons are filtered using a tunable filter into a plurality of predetermined wavelength bands. A two-dimensional array detector detects the filtered Raman scattered photons, in a spatially accurate manner. The results of filtering and detecting steps are combined to produce a plurality of spectrally resolved Raman images of the biological material.