Abstract:
In one embodiment, a personal care implement is disclosed. The personal care implement has an emitting end and an electromagnetic source for projecting electromagnetic radiation onto an area of skin to treat a skin condition. A light sensor is configured to sense an amount of ambient light present at the emitting end. A controller instructs the electromagnetic source to begin projecting only when the light sensor senses that the amount of ambient light at the emitting end is below a predefined threshold.
Abstract:
This application is directed to a fast method of quantitatively and qualitatively validating the amount of silicone adhesive in a composition comprising silicone adhesive and silicone polymer which comprises of testing a sample of the composition with near IR or mid IR spectroscopy. The method can be extended to analyzing the amount of silicone adhesive in an oral care composition.
Abstract:
An aqueous composition comprising surfactant, water, and a suspending agent comprising microfibrous cellulose that is characterized by a particle size distribution of the microfibrous cellulose that provides for increased structuring of the composition to suspend material.
Abstract:
A spectroscopic system may include: a probe having a probe tip and an optical coupler, the optical coupler including an emitting fiber group and first and second receiving fiber groups, each fiber group having a first end and a second end, wherein the first ends of the fiber groups are formed into a bundle and optically exposed through the probe tip; a light source optically coupled to the second end of the emitting fiber group, the light source emitting light in at least a first waveband and a second waveband, the second waveband being different from the first waveband; a first spectrometer optically coupled to the second end of the first receiving fiber group and configured to process light in the first waveband; and a second spectrometer optically coupled to the second end of the second receiving fiber group and configured to process light in the second waveband.
Abstract:
A process that degasses a structured surfactant composition that comprises at least one surfactant, water, and at least one suspending agent chosen from polysaccharides, gums, and celluloses. By degassing the composition, the suspending agent can form a structured system. Gas, such as air bubbles, disrupts the formation of the structuring system, which reduces the ability of the composition to suspend materials.
Abstract:
An aqueous composition comprising surfactant, at least one suspending agent, chosen from polysaccharides, gums, and celluloses, suspended material, and water, wherein the composition has a specified gas bubble content and stability. The composition is made by degassing the composition prior to the inclusion of suspended material. By degassing the composition, the suspending agent can form a structured system. Gas, such as air bubbles, disrupts the formation of the structuring system, which reduces the ability of the composition to suspend materials.
Abstract:
An aqueous composition comprising surfactant, water, and a suspending agent comprising microfibrous cellulose that is characterized by a particle size distribution of the microfibrous cellulose that provides for increased structuring of the composition to suspend material.
Abstract:
A process that degasses a structured surfactant composition that comprises at least one surfactant, water, and at least one suspending agent chosen from polysaccharides, gums, and celluloses. By degassing the composition, the suspending agent can form a structured system. Gas, such as air bubbles, disrupts the formation of the structuring system, which reduces the ability of the composition to suspend materials.