Abstract:
An electrical contact formed from a plurality of interlaced and annealed wires by weaving or braiding the wires together to form a mesh, annealing the mesh, and cutting the an-nealed mesh so as to form a plurality of individual electrical con-tacts. A method for forming a precursor material for use in man-ufacturing an electrical contact is also provided that includes ma-nipulating a plurality of wires so as to interlace the wires into a unitary structure. The unitary structure is then annealed. An electrical contact may then be formed from the precursor mate-rial by elastically rolling a portion of the unitary structure so as to form a tube, annealing the tube, and then cutting the unitary struc-ture so as to release the tube thereby to form an electrical contact. An electrical contact may also be formed by folding a portion of the unitary structure so as to form one or more pleats, annealing the pleated unitary structure, and then cutting the pleated unitary structure so as to release one or more electrical contacts. The pre-cursor material may also be formed by photo-etching a sheet of conductive material so as to form a mesh, and then annealing the mesh. A connector system may be formed including a housing defining a plurality of openings that are each filled with an elec-trical contact comprising a plurality of interlaced and annealed wires that have been previously either rolled or pleated.
Abstract:
The present invention provides a carrier with electrical shielding of individual contact elements, resulting in LGA interposer connectors with improved electrical performance. The carrier includes a plurality of openings, each of which may contain an individual contact element. The openings may be plated with conductive material, and may also be commoned to one or more reference voltages (e.g., ground) present on at least one conductive layer of the carrier. The carrier may be as simple as a single unified structure with a conductive layer on one outer surface, or much more complex, having many layers of dielectric and conductive material. The carrier may also provide improved retention of the individual contact elements. The process to assemble one embodiment of the carrier is also disclosed.
Abstract:
The present invention provides an electrical contact comprising a first member having spring properties and a second member wrapped around at least a portion of the first member wherein the second member has a greater electrical conductivity than the first member. In one embodiment, a conductor is wrapped around at least a portion of a spring. In another embodiment, the spring is formed into a coil or helix with a wire wrapped around at least a portion of the helical spring. In one form of this embodiment, the spring has a plurality of turns and the wire is wrapped around at least two of the turns. In another form of this embodiment, the spring has a plurality of turns and the wire is wrapped around all of the turns. An interposer connector is also provided having a frame including a top surface and a bottom surface and a plurality of apertures arranged in a pattern and opening onto the top and bottom surfaces of the frame. A plurality of springs are provided with each spring having a conductor wrapped around at least a portion of the spring where the conductor has a greater electrical conductivity than the spring. One of the springs is positioned within each of the apertures so that at least a portion of each of the conductors is exposed above the top and bottom surfaces of the frame.
Abstract:
An electrical contact formed from a plurality of interlaced and annealed wires by weaving or braiding the wires together to form a mesh, annealing the mesh, and cutting the annealed mesh so as to form a plurality of individual electrical contacts. A method for forming a precursor material for use in manufacturing an electrical contact is also provided that includes manipulating a plurality of wires so as to interlace the wires into a unitary structure. The unitary structure is then annealed. An electrical contact may then be formed from the precursor material by elastically rolling a portion of the unitary structure so as to form a tube, annealing the tube, and then cutting the unitary structure so as to release the tube thereby to form an electrical contact. An electrical contact may also be formed by folding a portion of the unitary structure so as to form one or more pleats, annealing the pleated unitary structure, and then cutting the pleated unitary structure so as to release one or more electrical contacts. The precursor material may also be formed by photo-etching a sheet of conductive material so as to form a mesh, and then annealing the mesh. A connector system may be formed including a housing defining a plurality of openings that are each filled with an electrical contact comprising a plurality of interlaced and annealed wires that have been previously either rolled or pleated.
Abstract:
An electrical contact (2) and method of making the electrical contact (2), and a connector (11) and method making the connector (11), wherein the electrical contact (2) is an electrically conducting, nonwoven mesh (60), with edges of the mesh providing multiple contact points for edgewise electrical connection of the electrical contact (2), wherein the mesh (60) is annealed while restrained in the form of the electrical contact (2) wherein the mesh (60) is free of internal elastic strain, and wherein the connector (11) retains the electrical contact (2) for edgewise connection.
Abstract:
An electrical contact having transmission-coil sections with at least two tightly wound turns. Active-coil sections are integral with, and positioned between the transmission-coil sections so as to provide electrical signal communication between the two transmission-coil sections, and spring characteristics. The transmission-coil sections are over coated with a conductive noble metal so as to fuse each of the tightly wound turns together to thereby provide for a shortened electrical transmission pathway through the electrical contact. An LGA interposer for providing data communication between a first and a second array of contact pads is also provided having a dielectric housing with an array of cavities; and a plurality of electrical contacts positioned within the cavities.
Abstract:
An interposer provides a high reliability interface between an LGA connector and a motherboard. The interposer includes a stepped spacer for each solder interconnection which prevents the relaxation of mechanical contact force while ensuring the integrity of each solder interconnection. The interposer provides noble metal plated contact pads on a first surface to receive the contact members of an LGA connector, and contact pads for BGA solder connections for attachment to a motherboard. A description of the processes to manufacture the interposer is also disclosed.
Abstract:
A board-to-board connector system is provided that may be used with a flex circuit, interposer, or polymer housing that includes a plurality of contacts that are arranged in an array. Each of the plurality of contacts includes a resilient body. A first conductor is provided that includes at least one wire formed in a spiral extending continuously through the resilient body, and having electrically accessible first and second ends. The first conductor is electrically connected to at least one of a plurality of signal conductor traces on a printed wiring board or the like. A second conductor is provided that includes at least one wire formed in a spiral extending continuously through the resilient body, and having electrically accessible first and second ends. The first conductor and the second conductor are in spaced apart relation to one another, and the second conductor is electrically connected to at least one of the plurality of ground path conductors arranged on the printed wiring board.
Abstract:
The present invention is a cost effective, reworkable, LGA-based interconnection for use between two circuit members such as a ceramic module and an FR4-based system board. The resilient contact members allow the reliable interconnection of two circuit members, even though the circuit members may have significantly different CTEs and have interconnections where the distance from neutral point is great enough to crack BGA or CGA solder connections. For factory reworkable applications, the ends of the contact members are semi-permanently attached to both the module and the system board. For certain field separable applications, semi-permanently attaching only one of the ends of an LGA to either the module or the system board provides increased reliability.
Abstract:
The present invention provides a carrier that provides improved retention to the individual contact elements resulting in LGA interposer connectors with improved manufacturability, reliability and more uniform mechanical and electrical performance. In one embodiment, the carrier, which includes upper and lower sections of dielectric material with an adhesive layer in between, includes a plurality of openings, each of which may contain an individual contact element. During assembly of the connector, once the contact elements are inserted, the adhesive layer is reflowed, thereby allowing the carrier to capture the location of the contact elements both with respect to each other as well as to the carrier. Alternately, the carrier may be implemented in a fashion that, while not including an adhesive layer to be reflowed, still provides improved retention of the individual contact elements. These embodiments may by easier to assemble, and less expensive to manufacture, especially in high volumes. Description of the processes to assemble the carrier and overall connector are also disclosed.