Abstract:
PROBLEM TO BE SOLVED: To provide novel methods for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles.SOLUTION: The invention includes apparatus, methods, and kits for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention includes apparatus, methods, and kits for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order, and employed for any suitable number of times within a system.
Abstract:
PROBLEM TO BE SOLVED: To provide a new method for microfluidic manipulation and/or analysis of particles (e.g., cells, viruses, organelles, beads, and/or vesicles). SOLUTION: A microfluidic particle-analysis system includes a device, a method, and a kit for the microfluidic manipulation and/or detection of the particles such as cells and/or beads. The system includes the device, the method and the kit for the microfluidic manipulation and/or analysis of the particles such as the cells, viruses, organelles, beads and/or vesicles, and microfluidic mechanisms are provided for performing such the manipulations and analyses. Such mechanisms enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of the particles. Further, these mechanisms can be combined in any suitable order and employed in any suitable number of times within the system. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
This invention provides a microfluidic sample injection apparatus (14, 100) for injecting a fluid sample into an analytical device (120) and a method for using the same. The microfluidic sample injection apparatus (14, 100) comprises a microfluidic device (100) and an integrated sample injection capillary (14) which is in fluid communication with a fluid flow channel of the microfluidic device (100).
Abstract:
This invention provides a microfluidic sample injection apparatus (14, 100) for injecting a fluid sample into an analytical device (120) and a method for using the same. The microfluidic sample injection apparatus (14, 100) comprises a microfluidic device (100) and an integrated sample injection capillary (14) which is in fluid communication with a fluid flow channel of the microfluidic device (100).
Abstract:
The invention provides systems (2000), including microfluidic mechanisms, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. These mechanisms may enable controlle d input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any number of suitable times in the system to allow particles to be sorted, cultured, mixed, treate d, and/or assayed, among others. These combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and/or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and/or may be more informative than comparable macrofluidic assays.
Abstract:
This invention provides a microfluidic sample injection apparatus (14, 100) for injecting a fluid sample into an analytical device (120) and a method for using the same. The microfluidic sample injection apparatus (14, 100) comprises a microfluidic device (100) and an integrated sample injection capillary (14) which is in fluid communication with a fluid flow channel of the microfluidic device (100).
Abstract:
The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and/or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and/or homogeneous particle sets, among others, in series and/or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and/or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and/or may be more informative than comparable macrofluidic assays.