Abstract:
An apparatus can include a pressure vessel that defines an interior region that can contain a liquid and/or a gas. A piston is movably disposed within the interior region of the pressure vessel. A divider is fixedly disposed within the interior region of the pressure vessel and divides the interior region into a first interior region on a first side of the divider and a second interior region on a second, opposite side of the divider. The piston is movable between a first position in which fluid having a first pressure is disposed within the first interior region and the first interior region has a volume less than a volume of the second interior region, and a second position in which fluid having a second pressure is disposed within the second interior region and the second interior region has a volume less than a volume of the first interior region.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
Abstract:
An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.
Abstract:
Systems and methods are described herein to operate an air compression and/or expansion system in its most efficient regime, at a desired efficiency, and/or achieve a desired pressure ratio independent of discharge temperature, with little to no impact on thermal efficiency. For example, systems and methods are provided for controlling and operating hydraulic pumps/motors used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, in its most efficient regime, continuously, substantially continuously, intermittently, or varied throughout an operating cycle or stroke of the system to achieve any desired pressure and temperature profile. Such systems and methods can achieve any desired pressure ratio independent of input or discharge temperature, and can also achieve any desired discharge temperature independent of pressure ratio, without altering any of the structural components of the device or system.
Abstract:
An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.