METHOD OF FACILITATING THREE-DIMENSIONAL DEVICE LAYOUT

    公开(公告)号:JPH1074907A

    公开(公告)日:1998-03-17

    申请号:JP16576497

    申请日:1997-06-23

    Applicant: SIEMENS AG IBM

    Abstract: PROBLEM TO BE SOLVED: A device layout has a device structure including a first device and a second device formed thereon, and an active region of the second region is located inside the upper surface so as to facilitate a three-dimensional device layout. SOLUTION: For example, a highly doped N polylayer is next formed on the surface. This polylayer is planarized up to an upper surface of a gate 895 to form a bit-line contact area 110. An MO dielectric layer is layed to expose the contact area 110. A metal layer 150 is next deposited so as to fill an contact opening 120. This metal layer 150 is etched for forming a bit-line conductor. The capacity of spatially positioning a device on a trench allows a more effective three-dimensional layout. As a result, the density of a device for a prescribed area can be increased.

    MANUFACTURE OF DYNAMIC RANDOM ACCESS MEMORY USING THREE-DIMENSIONAL TRENCH CAPACITOR

    公开(公告)号:JPH11145415A

    公开(公告)日:1999-05-28

    申请号:JP24707098

    申请日:1998-09-01

    Applicant: SIEMENS AG IBM

    Abstract: PROBLEM TO BE SOLVED: To provide a method of forming a second device of a transistor, for example, on first device of a trench, for example, in the manufacture of a dynamic random access memory using a three-dimensional trench capacitor. SOLUTION: A layer having an uppermost face of a single crystal is formed on a first device, and a layer 2 is used as a base for forming an active region of a second device. In this case, a substrate 305 having a single-crystal structure and the flat substrate surface is prepared, and a trench capacitor 315 is manufacture in the substrate. A polysilicon layer in the capacitor 315 is bored in the part lower than the substrate surface to form a recessed part, and an intermediate layer is formed in the recessed part to a height larger than the surface of a pad. This intermediate layer has the uppermost face of the single crystal. The surface of the intermediate layer and the pad are planarized in such a way that the uppermost surface of the intermediate layer substantially becomes flat to the substrate surface and a transistor 370 is manufactured on the uppermost face of the single crystal.

Patent Agency Ranking