Abstract:
Disclosed is a system for the interferometric measurement of a physical parameter, including an amplified spontaneous emission light source, optically connected to a Sagnac ring interferometer, and two detectors, each supplying a measurement signal representative of the light output from the interferometer, and a reference signal representative of the light output emitted by the source, which is impaired by an excess relative intensity noise. This measurement is obtained from a difference between the measurement and reference signals, weighted by a weighting coefficient which is controlled to minimise the statistical deviation of an additional weighted difference between signals obtained by demodulating the measurement and reference signals by way of an additional digital demodulation sequential code insensitive to the parameter. Also disclosed is a gyroscope including such a measuring system.
Abstract:
A fibre-optic interferometric measurement device (100) intended to measure a physical parameter (QR), includes: a wide-spectrum light source (103); a SAGNAC fibre-optic interferometer (110), in which there propagate two counter-propagating light waves (101, 102) including measurement elements (1140) sensitive to the physical parameter that results in a non-reciprocal phase difference Δφρ between the two light waves; and a detector (104) delivering an electric signal representative of the physical parameter. The measurement elements include a ring resonator (1143) in transmission mode including a first coupler (1141) and a second coupler (1142) respectively, which couple a first arm (111) and a second arm (112) respectively of the SAGNAC interferometer to the ring resonator, in such a way that the two light waves travel in opposing directions of travel (1143H, 1143AH).
Abstract:
A fiber-optic interferometer is designed to receive and propagate a first single-mode wave along a first optical path and, respectively, a second single-mode wave along a second optical path, the second optical path being the reverse of the first optical path, and to form a first output wave and, respectively, a second output wave, having a modulated phase difference Δϕm(t). According to the invention, the modulated phase difference Δϕm(t) is equal to sum of a first periodic phase difference Δϕπ(t) having a level equal to ±π, a second periodic phase difference Δϕalpha(t) having a level equal to ±alpha and a third periodic phase difference Δϕbeta(t) having a variable level between −beta and +beta, said modulated phase difference Δϕm(t) comprising per modulation period T at least eight modulation levels among twelve modulation levels and said modulated phase difference between such that: Δϕm(t+T/2)=−Δϕm(t).
Abstract:
An interferometric system with multi-axis optical fiber and a method for processing an interferometric signal in such a system, the multi-axis interferometric system includes a light source (1); a plurality of N optical-fiber coils (11, 12), a first optical separation element (3) capable of splitting the source beam (100) into a first split beam (140) and a second split beam (240); shared phase-modulation element (4); a photodetector (2) and a signal-processing system (800). The N optical-fiber coils (11, 12) are connected in parallel, the coils having respective transit times T1, T2, . . . TN that all differ from one another, and the signal-processing system (800) is capable of processing the interferometric signal (720) detected by the shared photodetector (2) as a function of the respective transit times in the various coils.
Abstract:
An interferometric measurement device includes a broad-spectrum spontaneous emission light source; a measurement interferometer, receiving as input a light signal with input light power and delivering as output a modulated light signal with output light power, the modulated light signal being modulated at a modulation frequency, depending on a physical parameter (ΩR) to be measured and being proportional to the input light power; an optical radiation detector, receiving the modulated light signal exiting from the measurement interferometer and delivering a modulated electrical signal representative of the output light power; a filtering interferometer, insensitive to the physical parameter to be measured, having a free spectral range ISL and a finesse F selected such that an interval of frequencies, centred around an optimal frequency foptim equal to (2k+1) ISL/2, k being a natural number, and of width Δf equal to [0.9−(3/2F)] ISL, includes the modulation frequency of the modulated light.