Abstract:
An interferometric measurement device includes a broad-spectrum spontaneous emission light source; a measurement interferometer, receiving as input a light signal with input light power and delivering as output a modulated light signal with output light power, the modulated light signal being modulated at a modulation frequency, depending on a physical parameter (ΩR) to be measured and being proportional to the input light power; an optical radiation detector, receiving the modulated light signal exiting from the measurement interferometer and delivering a modulated electrical signal representative of the output light power; a filtering interferometer, insensitive to the physical parameter to be measured, having a free spectral range ISL and a finesse F selected such that an interval of frequencies, centred around an optimal frequency foptim equal to (2k+1) ISL/2, k being a natural number, and of width Δf equal to [0.9−(3/2F)] ISL, includes the modulation frequency of the modulated light.
Abstract:
Interferometric measurement device includes a light source emitting a source signal and optical coupling elements receiving the source signal, directing part of the latter towards a measurement pathway including a Sagnac ring interferometer, of frequency fp, producing a power output signal POUT polarized according to a first polarization direction, tapping off another part of the source signal towards a compensation pathway producing a return power compensation signal PRET, and directing the output and compensation signals towards detection elements. The compensation pathway includes polarization rotation elements producing the compensation signal according to a second cross-direction of polarization, and optical looping elements redirecting part of the compensation signal towards the measurement pathway; the detection elements include a single detector connected to the coupling elements for receiving the output signal and the compensation signal; the device further includes power equilibration elements equalizing the output power and/or return power are routed towards the detector.
Abstract:
An integrated optical circuit includes a substrate having an input face, an output face, a lower face and an upper face, at least one optical waveguide having a first waveguide end located on the input face of the substrate and a second waveguide end located on the output face of the substrate. The lower face of the substrate includes a first part that is planar and parallel to the upper face and an optical block, the optical block being positioned in the median plane and in the incidence plane, the optical block forming a protrusion at least at the primary reflection point of the integrated optical circuit with respect to the first planar part of the lower face and the optical block being capable of receiving and attenuating at least one non-guided optical beam propagating on the optical path of a primary reflection.
Abstract:
A fibre-optic interferometric measurement device (100) intended to measure a physical parameter (QR), includes: a wide-spectrum light source (103); a SAGNAC fibre-optic interferometer (110), in which there propagate two counter-propagating light waves (101, 102) including measurement elements (1140) sensitive to the physical parameter that results in a non-reciprocal phase difference Δφρ between the two light waves; and a detector (104) delivering an electric signal representative of the physical parameter. The measurement elements include a ring resonator (1143) in transmission mode including a first coupler (1141) and a second coupler (1142) respectively, which couple a first arm (111) and a second arm (112) respectively of the SAGNAC interferometer to the ring resonator, in such a way that the two light waves travel in opposing directions of travel (1143H, 1143AH).
Abstract:
An integrated optical circuit includes a substrate having an input face, an output face, a lower face and an upper face, an optical waveguide extending between a first end located on the input face of the substrate and a second waveguide end located on the output face of the substrate. The integrated optical circuit further includes at least one off-center groove, the off-center groove extending from the lower face to the inside of the substrate, the at least one off-center groove being located at a non-zero distance d from the median plane, the off-center groove replacing a central groove and the at least one off-center groove being capable of attenuating the non-guided optical beam transmitted by the substrate between the first end and the second end.