Abstract:
The present disclosure relates to a novel polymer compound and a method for preparing the same. More particularly, the present disclosure relates to a novel conductive low band gap electron donor polymer compound having high photon absorptivity and improved hole mobility, a method for preparing the same and an organic photovoltaic cell containing the same. Since the conductive polymer compound as a low band gap electron donor exhibits high photon absorptivity and superior hole mobility, it can be usefully used as a material for an organic optoelectronic device such as an organic photodiode (OPD), an organic thin-film transistor (OTFT), an organic light-emitting diode (OLED), an organic photovoltaic cell, etc. as well as in the development of a n-type material.
Abstract:
Disclosed is a method for producing a CIS-based thin film based on self-accelerated photoelectrochemical deposition. The method includes 1) mixing precursors of elements constituting a CIS-based compound with a solvent to prepare an electrolyte solution, 2) connecting an electrochemical cell including a working electrode, the electrolyte solution and a counter electrode to a voltage or current applying device to construct an electro-deposition circuit, 3) irradiating light onto the working electrode while at the same time applying a cathodic voltage or current to the working electrode to induce self-accelerated photoelectrochemical deposition, thereby electro-depositing a CIS-based thin film, and 4) annealing the electro-deposited CIS-based thin film under a gas atmosphere including sulfur or selenium.
Abstract:
The present disclosure relates to a method for separating sugars and acids with reduced energy consumption, including a step of diffusively dialyzing a first acid hydrolysate obtained by saccharifying biomass with an acid solution, thereby preparing a second acid hydrolysate wherein the concentration of the acid solution contained in the acid hydrolysate is decreased; and a step of electrolyzing the second acid hydrolysate, thereby separating sugars from the acid solution, which is advantageous in that less energy is consumed, the separated acid solution can be recycled directly without further treatment due to high concentration and loss of sugars can be minimized.
Abstract:
Provided is an organic-inorganic hybrid photoelectric conversion device including a novel conductive organic semiconductor compound including paracyclophene and an organic-inorganic perovskite compound. A hole transport layer containing the conductive organic semiconductor compound including paracyclophene and a light absorbing layer are bound well organically with each other. Thus, it is possible to accomplish high photoelectric conversion efficiency. In addition, the organic-inorganic hybrid photoelectric conversion device is formed of a solid phase and has high stability, uses inexpensive materials, is obtained by a simple and easy process at low processing cost, and thus allows mass production with high cost efficiency, resulting in high commercial viability.
Abstract:
The present invention relates to a flexible photoelectrode and a manufacturing method thereof, and a dye-sensitized solar cell using the same. More particularly, the present invention relates to a flexible photoelectrode capable of forming a semiconductor electrode with excellent photoelectric conversion efficiency on a plastic substrate at low temperatures in a simple and stable manner, in which it is prepared by forming a nanocrystalline metal oxide layer calcined at high temperature on a high temperature resistant substrate, and transferring it to a flexible transparent substrate by a transfer method using an HF solution, and a flexible dye-sensitized solar cell comprising the same.
Abstract:
Disclosed is a methanol and sulfuric acid co-production system capable of producing methanol and sulfuric acid in equal equivalents. Specifically, the system includes an oxidation reaction unit configured to produce methyl bisulfate (CH3OSO3H) by reacting methane gas with an acid solution in the presence of a catalyst, a reactive distillation unit disposed downstream of the oxidation reaction unit and configured to esterify methyl bisulfate (CH3OSO3H) supplied from the oxidation reaction unit with trifluoroacetic acid (CF3COOH) to obtain a product and to separate the product into methyl trifluoroacetate (CF3COOCH3) and sulfuric acid (H2SO4) through thermal distillation, and a hydrolysis reaction unit disposed downstream of the reactive distillation unit and configured to produce methanol by hydrolyzing methyl trifluoroacetate (CF3COOCH3) supplied from the reactive distillation unit, in which the reactive distillation unit recirculates the sulfuric acid resulting from separation to the oxidation reaction unit.
Abstract:
The apparatus includes: a pretreatment tank where biomass and a first acid solution are stirred to extract sugar components from the biomass; a hydrolysis tank where water is added to the pretreated mixture transferred from the pretreatment tank such that the concentration of the acid is reduced and the sugar components are hydrolyzed to produce an acid hydrolyzate; a first sugar-acid separation tank where the acid hydrolyzate is separated into a second acid solution and a first hydrolyzate; a second sugar-acid separation tank where the first hydrolyzate is separated into a third acid solution and a second hydrolyzate; a fermentation tank where the second hydrolyzate is fermented to produce bioenergy; and an acid solution concentration tank where a mixture of the second acid solution transferred from the first sugar-acid separation tank and the third acid solution transferred from the second sugar-acid separation tank is concentrated to a higher level for reuse.
Abstract:
Provided is a new ternary Zn2SnO4 (ZSO) electron-transporting electrode of a CH3NH3PbI3 perovskite solar cell as an alternative to the conventional TiO2 electrode. The ZSO-based perovskite solar cell exhibits faster electron transport (˜10 times) and superior charge-collecting capability compared to the TiO2-based perovskite solar cell with similar thickness and energy conversion efficiency.
Abstract:
The present disclosure provides an organic semiconductor compound, which has superior charge mobility, low band gap, wide light absorption area and adequate molecular energy level. The conductive organic semiconductor compound of the present disclosure can be used as a material for various organic optoelectric devices such as an organic photodiode (OPD), an organic light-emitting diode (OLED), an organic thin-film transistor (OTFT), an organic solar cell, etc. In addition, it can be prepared into a thin film via a solution process, can be advantageously used to fabricate large-area devices and can reduce the cost of device fabrication.
Abstract:
The present disclosure relates to an additive for improving the light stability of a conjugated polymer, a method for preparing the same and an organic photovoltaic cell containing the same. Since the additive of the present disclosure improves the light stability of a conjugated polymer, it can be used for an organic photovoltaic (OPV) cell device and can also be usefully used for an organic optoelectronic device using a conductive polymer, such as an organic photodiode (OPD), an organic thin-film transistor (OTFT), an organic light-emitting diode (OLED), etc.