Abstract:
Provided are an absolute position measurement method, an absolute position measurement apparatus, and a scale. The scale includes a scale pattern formed by replacing repeatedly arranged pseudo-random-codes with a sequence of a linear feedback shift register of N stages using a first symbol with first width representing a first state and a second symbol with second width representing a second state. The first is divided into two or more first symbol areas of different structures, and the second symbol is divided into two or more second symbol areas of different structures. There is at least one overlap area in which the first symbol and the second symbol overlap each other to have the same structure.
Abstract:
Provided are a thickness measuring apparatus and a thickness measuring method. The thickness measuring method includes irradiating first laser beam of a first wavelength λ1 to a transparent substrate and measuring intensity of first laser beam transmitting the transparent substrate; irradiating second laser beam of a second wavelength λ2 to the transparent substrate and measuring intensity of second laser beam transmitting the transparent substrate; and extracting a rotation angle on a Lissajous graph using the first and second laser beams transmitting the transparent substrate. A phase difference between adjacent rays by multiple internal reflection of the first laser beam and a phase difference between adjacent ray by multiple internal reflection of the second laser beam is maintained at π/2.
Abstract:
Provided are a transparent substrate monitoring apparatus and a transparent substrate monitoring method. The transparent substrate monitoring apparatus includes a light emitting unit emitting light; a double slit disposed on a plane defined in a first direction and a second direction intersecting a propagation direction of incident light and includes a first slit and a second slit spaced apart from each other in the first direction to allow the light to pass therethrough; an optical detection unit measuring an intensity profile or position of an interference pattern formed on a screen plane; and a signal processing unit receiving a signal from the optical detection unit to calculate an optical phase difference or an optical path difference.