Abstract:
PROBLEM TO BE SOLVED: To provide a device and method for adjusting a beam in an optical beam path. SOLUTION: The device for beam adjustment in optical beam paths having at least two mutually independent light sources (1 and 2), preferably, in beam paths (8 and 9) of a high resolution or super high resolution microscope requires superposition of beams of light sources (1 and 2) in a common illuminating beam path (10), and a calibration sample (22) assisting in checking pupil positions and/or focus positions of the beams is put in the illuminating beam path (10) and can be taken out of it. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a device and method for adjusting a beam in an optical beam path.SOLUTION: A device for beam adjustment in optical beam paths having at least two mutually independent light sources (1 and 2), preferably, in beam paths (8 and 9) of a high resolution or super high resolution microscope requires superposition of beams of the light sources (1 and 2) in a common illuminating beam path (10). In the device, a calibration sample (22) for assisting so as to check pupil positions and/or focus positions of the beams is put in the illuminating beam path (10) and can be taken out from the illuminating beam path (10).
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a laser scanning type fluorescence microscope by which a sample is inexpensively and rapidly scanned with compact and simple structure. SOLUTION: The sample (1) to be examined comprises a substance that can be repeatedly converted from a first state (Z1, A) into a second state (Z2, B), the first and the second states (Z1, A; Z2, B) differing from one another in at least one optical property, the method comprises the steps that the substance in a sample region (P) to be recorded is firstly brought into the first state (Z1, A), and that the second state (Z2, B) is induced by means of an optical signal (4), spatially delimited subregions being specifically excluded within the sample region (P) to be recorded, are defined in that the optical signal (4) is provided in the form of a focal line (10) with a cross-sectional profile having at least one intensity zero point (5) with laterally neighboring intensity maxima (9). COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a high spatial resolution inspection method using a laser scanning fluorescence microscope. SOLUTION: A sample 1 contains a substance transited repeatedly from the first state (Z1, A) to the second state (Z2, B), and the first state is different in at least one optical property from the second state. The method includes steps of: (a) transiting the substance to the first state by a switch signal 2 within a recorded sample area P; (b) inducing the second state by an optical signal 4, and for removing clearly a spatially limited partial area within the recorded sample area P; (c) reading the residual first area (Z1, A1, A2, A3) by a test signal 7; and (d) repeating the steps (a)-(c), and displacing the optical signal 4 in every repetition to scan the sample 1. The steps (a)-(d) are carried out in a sequence adapted to individual measuring situations, in the method. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
Beschrieben ist eine mikroskopische Einrichtung (10) zur dreidimensionalen Lokalisierung von punktförmigen Objekten (14, 16). Die Einrichtung (10) umfasst zwei Abbildungsoptiken (12, 26, 26‘), die ein und dasselbe in einem Objektraum (18) angeordnete punktförmige Objekt (14, 16) jeweils in Form einer Fokuslichtverteilung (40, 40’, 42, 42’) in zwei separate Bildräume (34) abbilden, zwei Detektoreinheiten (28, 28’), die jeweils einer der beiden Abbildungsoptiken (12, 26, 26‘) zugeordnet sind und in Detektionspunkten einer in dem jeweiligen Bildraum (34) liegenden Detektionsfläche (27, 27‘) einen auswertbaren Lichtfleck (54, 54’) erfassen und eine Auswerteeinheit (60), welche die Detektionspunkte der beiden Detektionsflächen (27, 27‘) paarweise in Korrespondenz zueinander setzt und durch Auswerten der beiden Lichtflecke (54, 54‘) eine laterale x-y-Position und eine axiale z-Position des punktförmigen Objektes (14, 16) ermittelt. Die beiden Abbildungsoptiken (12, 26, 26‘) weisen jeweils ein optisches Mittel (26, 26‘) auf, das die jeweilige Fokuslichtverteilung (40, 40’, 42, 42’) schräg zu einer in der jeweiligen Abbildungsoptik (12, 26, 26‘) vorgesehenen Detektionsachse (36) ausrichtet, die senkrecht zur Detektionsfläche (27, 27‘) der jeweiligen Detektionseinheit (26, 26‘) liegt. Die durch die optischen Mittel (26, 26‘) bewirkten Schrägstellungen der beiden Fokuslichtverteilungen (40, 40’, 42, 42’) sind einander derart entgegengesetzt, dass sich die beiden Lichtflecke (54, 54‘) mit einer Änderung der z-Position des punktförmigen Objektes (14, 16) in ihren jeweiligen Detektionsflächen (27, 27‘) unter Berücksichtigung der Detektionspunktkorrespondenz gegenläufig verschieben. Die Auswerteeinheit (60) ermittelt die axiale z-Position des punktförmigen Objektes (14, 16) an Hand der relativen Lage der beiden Lichtflecke (54, 54‘).
Abstract:
The process involves bringing a substance of a sample in a sample region to be detected in a condition. Another condition is induced by optical signals, and spatial limited partial regions within the sample region to be detected are omitted in a selective manner. The optical signal is provided such that a vertical wave (9) with defined intensity-zero is formed in the sample region to be detected, where the vertical wave is generated by focusing coherent light rays (10,11) in a pupil of an objective (13). The coherent light rays are provided by using glass fibers. An independent claim is also included for a microscope, in particular laser-raster-fluorescence microscope for spatial high resolution examination of samples.
Abstract:
An imaging device (110) has at least one light-source (114,116) for generating at least one coherent illumination light (124) for illuminating at least one zone within or on the test sample. A spatially separating beam-splitter (140) at least partly separates coherent detection-light emitted from incoherent detection light outputted from the test sample (112). At least one additional beam splitting element (160) is arranged in the beam path for separating the coherent detection light (146) from the coherent illumination light (124). Independent claims are given for the following. (1) (A) A method for imaging at least one microscopic property of a test sample (2) (B) Application of a device for coherent laser spectroscopy method.
Abstract:
Eine Abtastvorrichtung (10) zum Abtasten eines Objekts (122) für den Einsatz in einem Rastermikroskop (100) umfasst mindestens eine Abtasteinheit (12) zum zweidimensionalen Abtasten des Objekts (122) mit Hilfe eines Lichtstrahls (104) und mindestens eine Rotationsvorrichtung (14) zum Drehen der Abtasteinheit (12) um eine Rotationsachse (16), um eine Bildfeldrotation zu erzeugen. Dabei umfasst die Abtasteinheit (12) mindestens ein Ablenkelement (18) zum Ablenken eines auf das Ablenkelement (18) auftreffenden Lichtstrahls (110). Ferner hat das Ablenkelement (18) eine rotationssymmetrische Form. (Figur 1a) 92924