Abstract:
A device for receiving an RF input signal (2) and for processing the received RF input signal (2) is provided. The device comprises: an input (3) receiving the RF input signal (2); a clock circuit (34) generating a reference clock signal having a clock circuit specific reference frequency (fclock); and a frequency feedback control loop (17, 18, 20, 21, 22, 23; 35, 37, 38). The frequency feedback control loop is adapted to extract frequency information from the RF input signal (2), to put the clock circuit specific reference frequency (fclock) into relation with the extracted frequency information and to correct for inaccuracies of the clock circuit specific reference frequency based on this relation.
Abstract:
The invention relates to a MEMS resonator having at least one mode shape comprising: a substrate (2) having a surface (12), and a resonator structure (1), wherein the resonator structure (1) is part of the substrate (2), characterized in that the resonator structure (1) is defined by a first closed trench (3) and a second closed trench (3), the first trench (3) being located inside the second trench (3) so as to form a tube structure (1) inside the substrate (2), and the resonator structure (1) being released from the substrate (2) only in directions parallel to the surface (12). The invention further relates to a method of manufacturing such a MEMS resonator.
Abstract:
A wireless transmitter (100) comprises a signal generator (10) for generating a signal, an amplifier (50) for amplifying the signal, and a phase shifting circuit (20) coupled between the signal generator (10) and the amplifier (50) and arranged to shift the phase of the signal to cancel remodulation of the signal generator (10) by the amplified signal.
Abstract:
A radiofrequency transmitting device (D) is intended for delivering output signals having a chosen radiofrequency from input data split up into complementary phase data and amplitude data. This device (D) comprises i) a radiofrequency reference oscillator (RO) arranged for outputting a reference signal having a fixed radiofrequency reference, and ii) a digital phase modulator (PM) arranged for synthesizing the chosen radiofrequency from the fixed radiofrequency reference and for phase modulating the reference signal with the phase data, in order to produce an output signal having the chosen radiofrequency.
Abstract:
Method of manufacturing a MEMS device integrated in a silicon substrate. In parallel to the manufacturing of the MEMS device passive components as trench capacitors with a high capacitance density can be processed. The method is especially suited for MEMS resonators with resonance frequencies in the range of 10 MHz.
Abstract:
The invention relates to a MEMS resonator having at least one mode shape comprising: a substrate (2) having a surface (12), and a resonator structure (1), wherein the resonator structure (1) is part of the substrate (2), characterized in that the resonator structure (1) is defined by a first closed trench (3) and a second closed trench (3), the first trench (3) being located inside the second trench (3) so as to form a tube structure (1) inside the substrate (2), and the resonator structure (1) being released from the substrate (2) only in directions parallel to the surface (12). The invention further relates to a method of manufacturing such a MEMS resonator.
Abstract:
The invention relates to a receiver of signals [S] received from a wireless network, said receiver working at a so-called reference oscillation frequency controlled by a so-called reference value [Vref]. Said receiver includes demodulation means [DEMO] for demodulating the received signal [S], means [EST] of estimating a mean value [MV] of the demodulated signal [SD], means [COR] of correcting the mean value [MV] of the demodulated signal [SD] to the reference value [Vref], decision means [DEC] for determining the binary values adopted by the received signal [S]. According to the invention, the estimation means [EST] include first means [ESTA] of fast extraction of a first mean value [MVA] of the demodulated signal [SD] used in decision means [DEC] during a first time period and second means [ESTB] of slow extraction of a second mean value [MVB] of the demodulated signal [SD] used in correction means [COR] and, during a second time period, in decision means [DEC].
Abstract:
A wireless transmitter (100) comprises a signal generator (10) for generating a signal, an amplifier (50) for amplifying the signal, and a phase shifting circuit (20) coupled between the signal generator (10) and the amplifier (50) and arranged to shift the phase of the signal to cancel remodulation of the signal generator (10) by the amplified signal.
Abstract:
The invention relates to a MEMS resonator having at least one mode shape comprising: a substrate (2) having a surface (12), and a resonator structure (1), wherein the resonator structure (1) is part of the substrate (2), characterized in that the resonator structure (1) is defined by a first closed trench (3) and a second closed trench (3), the first trench (3) being located inside the second trench (3) so as to form a tube structure (1) inside the substrate (2), and the resonator structure (1) being released from the substrate (2) only in directions parallel to the surface (12). The invention further relates to a method of manufacturing such a MEMS resonator.