Abstract:
The invention relates to a method and to an apparatus for visualizing a sequence of volume images of a moving object. Methods and apparatus of this kind are used in cases where a sequence of three-dimensional volume images is to be rendered as a two-dimensional image, for example, for a viewer. The invention utilizes the fact that usually only the volume values of a part of the voxels are relevant for the derivation of a two-dimensional image from a volume image. In the case of a sequence of volume images of a moving object, the derivations of the two dimensional images can be accelerated by storing the voxels which are relevant for the visualization during the visualization of a first volume image and by deriving the relevant two-dimensional image during the visualization of a second volume image exclusively from the volume values of the stored voxels and from voxels neighboring such stored voxels. The selection of volume values of neighboring voxels for use is dependent on the motion of the object. The voxels of the second volume image which are relevant for the visualization are stored again and used accordingly for the visualization of a third volume image. These steps are repeated accordingly for further volume images of the sequence.
Abstract:
The invention relates to a method and to an apparatus for visualizing a sequence of volume images of a moving object. Methods and apparatus of this kind are used in cases where a sequence of three-dimensional volume images is to be rendered as a two-dimensional image, for example, for a viewer. The invention utilizes the fact that usually only the volume values of a part of the voxels are relevant for the derivation of a two-dimensional image from a volume image. In the case of a sequence of volume images of a moving object, the derivations of the two dimensional images can be accelerated by storing the voxels which are relevant for the visualization during the visualization of a first volume image and by deriving the relevant two-dimensional image during the visualization of a second volume image exclusively from the volume values of the stored voxels and from voxels neighboring such stored voxels. The selection of volume values of neighboring voxels for use is dependent on the motion of the object. The voxels of the second volume image which are relevant for the visualization are stored again and used accordingly for the visualization of a third volume image. These steps are repeated accordingly for further volume images of the sequence.
Abstract:
The invention relates to a method of segmenting a three-dimensional structure from a three-dimensional, and in particular medical, data set while making allowance for user corrections. The method is performed with the help of a deformable three-dimensional model whose surface is formed by a network of nodes and mashes that connect these nodes. Once the model has been positioned at the point in the three-dimensional data set at which the structure to be segmented is situated and positions of nodes have, if necessary, been changed by known methods of segmentation, any desired nodes can be displaced manually. The nodes of the model are re-calculated by making weighted allowance for the nodes that have been displaced manually.
Abstract:
The invention relates to a method of segmenting a three-dimensional structure from a three-dimensional, and in particular medical, data set while making allowance for user corrections. The method is performed with the help of a deformable three-dimensional model whose surface is formed by a network of nodes and mashes that connect these nodes. Once the model has been positioned at the point in the three-dimensional data set at which the structure to be segmented is situated and positions of nodes have, if necessary, been changed by known methods of segmentation, any desired nodes can be displaced manually. The nodes of the model are re-calculated by making weighted allowance for the nodes that have been displaced manually.
Abstract:
The invention relates to a system (100) for registering an atlas image from an atlas of multidimensional images with an objective image, the system comprising a generation unit (105) for generating a candidate transformation for transforming a first region of the atlas image, a transformation unit (110) for transforming the first region of the atlas image using the candidate transformation, a similarity unit (120) for computing a measure of similarity of the transformed first region of the atlas image and a corresponding first region of the objective image, an evaluation unit (130) for evaluating the candidate transformation using a criterion based on the computed measure of similarity and determining an optimal transformation based on the evaluation of the candidate transformation, an extension unit (140) for extending the optimal transformation of the first region of the atlas image to a second region of the atlas image, wherein the second region comprises the first region, thereby creating a registration transformation and a registration unit (150) for transforming the second region using the registration transformation, thereby registering the atlas image with the objective image. Advantageously, the system (100) does not require setting landmark positions in the objective image. A further advantage of the system (100) is that since the similarity measure is computed locally, i.e., based on the first region of the atlas image, the registration is fast and thus attractive for clinical use.
Abstract:
The invention relates to a method for data processing. At stage 3 the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image is established at step 6. In order to enable this, the reference imaging of learning examples may be performed at step 2 and each reference image may be analyzed at step 4, the results may be stored in a suitably arranged database. In order to process the image under consideration, the image is accessed at step 11, the suitable landmark corresponding to the reference landmark in the reference image is identified at step 13 and the spatial relationship established at step 6 is applied to the landmark thereby providing the initial position of the object in the actual image. In case when for the object an imaging volume is selected, the method 1 according to the invention follows to step 7, whereby the scanning 17 is performed within the boundaries given by the thus established scanning volume. In case when for the object a model representative of the target is selected, the method 1 follows to the image segmentation step 19, whereby a suitable segmentation is performed. In case when for the model a deformable model is selected, the segmentation is performed by deforming the model thereby providing spatial boundaries of the target area. The invention further relates to an apparatus and a computer program for image processing.
Abstract:
The invention relates to a registration method (100) of registering a second image dataset with a first image dataset on the basis of a set of landmarks, said registration method (100) comprising a weight-assigning step (125) for assigning a weight to each coordinate of each landmark from the set of landmarks and a registering step (145) for registering the second image dataset with the first image dataset on the basis of the weight assigned to the each coordinate. Choosing an appropriate set of landmarks and assigning an appropriate weight to each coordinate of each landmark from the set of landmarks can be used for optimizing selected displacements of a designated anatomical structure comprising elastic bodies and/or a plurality of independent rigid bodies in a sequence of image datasets. This enables rendering a sequence of views wherein the designated anatomical structure is not displaced off a viewing plane and/or a selected part of the designated anatomical structure is not displaced in a viewing plane.
Abstract:
A therapy treatment response simulator includes a modeler (202) that generates a model of a structure of an object or subject based on information about the object or subject and a predictor (204) that generates a prediction indicative of how the structure is likely to respond to treatment based on the model and a therapy treatment plan. In another aspect, a system includes performing a patient state determining in silico simulation for a patient using a candidate set of parameters corresponding to another patient and producing a first signal indicative of a predicted state of the patient, and generating a second signal indicative of whether the candidate set of parameters are suitable for the patient based on a known state of the patient.