Abstract:
PROBLEM TO BE SOLVED: To provide a radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control. SOLUTION: An RF driver amplifier system includes a linear transconductor receiving an input voltage and providing a controlled current on the basis of input voltage received, temperature compensation circuitry for varying power from the linear transconductor according to absolute temperature, an exponential current controller receiving power varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry, thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry. Control current passes from the inductive degeneration compensator to the driver amplifier circuitry. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide local oscillator leakage control in direct conversion processes. SOLUTION: A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.
Abstract:
A signal generator includes first and second mixers, first and second phase shift networks, and a summer. The first and second mixers respectively receive and mix a quadrature and an inphase sinusoid at a first frequency with a second input sinusoid at a second frequency. The first and second phase shift networks respectively couple to the first and second mixers, receive the outputs from the first and second mixers, and generate first and second phase shift networks respectively couple to the first and second mixers, receive the outputs from the first and second mixers, and generate first and second phase shifted signals. The summer couples to the first and second phase shift networks and receives ans sums the first and second phase shifted signals to generate a first output sinusoid. A second summer may be coupled to the first and second phase shift networks to receive and sum third and fourth phase shifted signals (generated by the first and second phase shift networks, respectively) to generate a second output sinusoid. The first and second output sinusoids are in quadrature. A third phase shift network may be adapted to receive a first input sinusoidal at the first frequency and generate the inphase and quadrature sinusoids.
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.
Abstract:
A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry, thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry. Control current passes from the inductive degeneration compensator to the driver amplifier circuitry. Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.
Abstract:
A system and method for generating a local oscillator (LO) frequency in a zero intermediate frequency (IF) receiver or transmitter is presented. A signal is received from a voltage controlled oscillator (VCO). The signal has a VCO frequency. The VCO frequency is divided by a number N to produce a signal having a divided-down frequency. The signal having the VCO frequency is then mixed with the signal having the divided-down frequency to produce an output signal having an output frequency. Local oscillator leakage is reduced. Thus, the receiver or transmitter may operate in multiple wireless communication bands and modes and meet the associated specifications.