Abstract:
The methods and apparatus described herein are used to operate a wireless device. One method of operating a wireless device includes filtering a first set of digital samples using a first filter at a first time to generate a first signal, transmitting the first signal, filtering a second set of digital samples using a second filter at a second time to generate a second signal, and transmitting the second signal. In one embodiment, an apparatus for operating a wireless device includes a processor configured to filter, at a first wireless device, a first set of digital samples using a first filter at a first time to generate a first signal, transmit, from the first wireless device, the first signal, and filter, at the first wireless device, a second set of digital samples using a second filter at a second time to generate a second signal.
Abstract:
A method, a computer program product, and an apparatus are provided. In one configuration, the apparatus transmits a first broadcast signal including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus transmits a second broadcast signal in the unicast resource. In another configuration, the apparatus, which is a first wireless device, receives a first broadcast signal from a second wireless device including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus receives a first scheduling signal from the second wireless device in a scheduling resource. The first scheduling signal is for indicating a second intention to use the unicast resource for transmitting a second broadcast signal. Furthermore, the apparatus refrains from transmitting a second scheduling signal in the scheduling resource in response to the first scheduling signal.
Abstract:
Methods, systems, and devices are described for opportunistically using at least a portion of a dedicated short range communications (DSRC) spectrum. A multi-mode device is operated outside of the DSRC spectrum. An activity level is detected on at least a portion of the DSRC spectrum, and it is determined whether to use at least the portion of the DSRC spectrum based at least in part on the detected activity level.
Abstract:
Various embodiments, relate to a communications system in which communications devices of users and communications devices of vehicular systems communicate safety messages through a cellular communications band or the DSRC (Dedicated short-range communications) vehicular communications band or a combination of both. Various methods and apparatus are directed to communicating safety messages between vehicles and pedestrians/cyclists through the use of a cell phone, thus improving the impact of vehicular communications. In some embodiments, at least some cell phones in a communications system includes both a DSRC communications capability and a cellular communications capability.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generates a codeword, determines at least one puncture to the codeword based on allowing a legacy receiver to decode the codeword without knowledge of the at least one puncture, replaces each of the at least one puncture with a pilot, and transmits the codeword. The apparatus may also generate an IEEE 802.11 codeword having pilots in a first set of subcarriers, and puncture the codeword with additional pilots unknown to a legacy receiver in a second set of subcarriers. Accordingly, when an original set of pilot symbols is insufficient or inappropriately placed in a resource structure, a codeword may be transmitted with a new pilot structure capable of being decoded by legacy receivers not aware of the new pilot structure.