Abstract:
Los métodos y aparatos descritos en la presente se utilizan para llevar a cabo el posicionamiento de geolocalizacion urbana y en interiores. Un método para estimar una geolocalizacion de uno de un primer dispositivo inalámbrico o un segundo dispositivo inalámbrico incluye recibir, en el primer dispositivo inalámbrico, una senal desde el segundo dispositivo inalámbrico, determinar, en el primer dispositivo inalámbrico, una característica física de la senal recibida, y determinar, en el primer dispositivo inalámbrico, una region en un mapa que representa una geolocalizacion del primer dispositivo inalámbrico o del segundo dispositivo inalámbrico en base a la característica física de la senal recibida, una matriz de transicion de estado y un vector de ocupacion de estado.
Abstract:
Sets of communications resources, e.g., sets of peer discovery resources, in a peer to peer communications system may be use concurrently by multiple transmitting devices. The communications system supports a plurality of different pilot sequences. Multiple transmitting devices may transmit their signals on the same set of communications resources, but with different pilot sequences. This approach allows receiving devices to distinguish between multiple signal sources, e.g., wireless terminals, using a shared communications resource. A wireless communications device monitors a plurality of different sets of communications resources and selects, e.g., based on received energy levels, a set of communications resources from said plurality of different sets of communications resources to use for communication. The communications device further selects one of a plurality of different pilot sequences to use for said communication and transmits pilot signals using the selected pilot sequence and at least a portion of the selected set of communications resources.
Abstract:
Methods and apparatus for communicating the location of a mobile wireless communications device are described. Codewords, e.g., values or sets of bits, are selected from a codebook mapping different codewords to corresponding pieces of location information. In a first approach location information is communicated by using codewords from different codebooks with the product, e.g., intersection of location information provided by the codewords, providing relatively detailed location information using relatively few bits. In a second approach user specific codebooks are defined for individual users. The codewords in the codebook corresponding to a particular user map to locations the individual specific user is likely to frequent. In another approach codewords are transmitted at different power levels and/or using different coding rates. Received codewords corresponding to a device may be used in combination to determine the location or refine the understanding of the device location.
Abstract:
Methods and apparatus related to communicating advertisements and/or service announcements to devices in a communications system are described. In various embodiments mobile devices are used as mobile advertisement transmission platforms. Advertisements may be downloaded to the wireless communications device along with transmission constraints. Transmission of an advertisement is made when a transmission constraint, e.g., target audience constraint is satisfied. The wireless terminal may change its transmission frequency, coding rate and/or other transmission characteristics to satisfy a transmission constraint and/or optimize revenue. The mobile device reports advertisements transmissions to a network device, e.g., advertisement server and the owner of the device is compensated for the transmissions. Transmission constraints may involve a number of devices to be reached, the type of devices to be reached, and/or other constraints relating to the demographics of device users. Information may be obtained from peer discovery signals and used to determine if a constraint is satisfied.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generates a codeword, determines at least one puncture to the codeword based on allowing a legacy receiver to decode the codeword without knowledge of the at least one puncture, replaces each of the at least one puncture with a pilot, and transmits the codeword. The apparatus may also generate an IEEE 802.11 codeword having pilots in a first set of subcarriers, and puncture the codeword with additional pilots unknown to a legacy receiver in a second set of subcarriers. Accordingly, when an original set of pilot symbols is insufficient or inappropriately placed in a resource structure, a codeword may be transmitted with a new pilot structure capable of being decoded by legacy receivers not aware of the new pilot structure.
Abstract:
Non-coherent modulation is used to communicate coding information via pilot signals using a first subset of resources, and coherent modulation is used to generate data signals. This allows for a stronger global code while keeping individual signaling complexity low. First and second communications devices communicate information using a set of communications resources. By performing non-coherent demodulation on pilot signals received on a first subset of said set of communications resources coding information is recovered. First and second channel estimates are generated from the pilot signals received on the first subset of said communications resources. Coherent demodulation is performed on data signals received on a second subset of said set of communications resources using said first and second channel estimates and said coding information to recover information communicated by said first communications device and to recover separate information communicated by said second communications device.
Abstract:
Methods and apparatus related to communicating advertisements and/or service announcements to devices in a communications system are described. In various embodiments mobile devices are used as mobile advertisement transmission platforms. Advertisements may be downloaded to the wireless communications device along with transmission constraints. Transmission of an advertisement is made when a transmission constraint, e.g., target audience constraint is satisfied. The wireless terminal may change its transmission frequency, coding rate and/or other transmission characteristics to satisfy a transmission constraint and/or optimize revenue. The mobile device reports advertisements transmissions to a network device, e.g., advertisement server and the owner of the device is compensated for the transmissions. Transmission constraints may involve a number of devices to be reached, the type of devices to be reached, and/or other constraints relating to the demographics of device users. Information may be obtained from peer discovery signals and used to determine if a constraint is satisfied.
Abstract:
One or more bits are used in peer discovery signals to signal a device's ability and/or willingness to participate in a cooperative manner with regard to one or more mobile device location determination related operations. In some embodiments, the one or more bits are located at predetermined locations within a header portion of a peer discovery signal. Different bits, in some embodiments, are associated with different specific cooperative location determination related operations. The peer discovery signal is transmitted, e.g., broadcast, periodically or on some predetermined basis by a mobile wireless communications device. In this manner, a device listening to the peer discovery signals can determine other devices' willingness to perform particular location discovery related operations with very little signaling overhead.
Abstract:
Signal measurements are received, e.g., by a network device such as a location determination server, and a location of a mobile device to which the signal measurements correspond is determined. The measurements are also used to update parameters used to generate a signal prediction map. The signal prediction map, generated using the updated parameters, is then used for determining the position of another mobile device. In some embodiments parameter updating is performed when the location of a device is determined to a predetermined degree of certainty but not when the position of a mobile device is determined with a lower degree of certainty. Parameters used for generating prediction maps are updated, e.g., refined, based on signals collected for use in determining the location of a device without the need to conduct an updated survey and/or take signal measurements specifically for the purpose of updating prediction map parameters.