Abstract:
A nonlinear power supply generator is provided that nonlinearly changes a power supply voltage for a circuit during power up of the circuit to reduce high-frequency noise in an output signal from the circuit.
Abstract:
A time-analog-to-digital converter (TAD) utilizes a time-to-digital approach for analog-to-digital conversion. The TAD includes two voltage-to-delay converters (VDCs), e.g., CMOS inverter chains, in order to increase the dynamic range of the TAD. Each VDC can handle a different range of input voltages. Comparators compare the input signal voltage to reference voltages corresponding to the different ranges of input voltage and a selector selects one of the VDC line outputs based on the range in which the input signal lies. A filter estimates the input signal voltage from a delay signal from the selected output.
Abstract:
A compute-in-memory array is provided in which each neuron includes a capacitor and an output transistor. During an evaluation phase, a filter weight voltage and the binary state of an input bit controls whether the output transistor conducts or is switched off to affect a voltage of a read bit line connected to the output transistor.
Abstract:
In certain aspects, a method for temperature monitoring comprises receiving temperature readings from a plurality of temperature sensors on a chip, and determining an average or a sum of the temperature readings from the temperature sensors. The sum may be a weighted sum of the temperature readings. The method also comprises computing a temperature at a location on the chip based on the average or sum of the temperature readings. The location may be located at approximately a centroid of the locations of the temperature sensors, an estimated hotspot location on the chip, or another location on the chip.
Abstract:
Delay circuits capable of providing delays closely matching propagation delays of synchronous circuits are described. In one design, an apparatus includes a synchronous circuit and a delay circuit. The synchronous circuit includes a forward path from a data input to a data output. The synchronous circuit receives input data and provides output data with a propagation delay. The delay circuit receives an input signal and provides a delayed input signal having a delay matching the propagation delay of the synchronous circuit. The delay circuit includes at least two logic gates in the forward path of the synchronous circuit. The synchronous and delay circuits may be implemented based on the same or similar circuit architecture. The delay circuit may be based on a replica of the synchronous circuit, with the replica having feedback loops broken and clock input coupled to appropriate logic value to always enable the delay circuit.
Abstract:
Certain aspects of the present disclosure provide techniques for parameterized activation functions. Input data is processed with at least one layer of the neural network model comprising a parameterized activation function, and at least one trainable parameter of the parameterized activation function is updated based at least in part on output from the at least one layer of the neural network model. The at least one trainable parameter may adjust at least one of a range over which the parameterized activation function is nonlinear or a shape of the parameterized activation function, and/or may adjust a location of at least one pivot of the parameterized activation function.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus detects a level of power received from each of a plurality of sources. The apparatus directs the power received from a first source to a charging circuit and directs the power received from at least a second source to the charging circuit. The apparatus directs the power received from the first source to the charging circuit by comparing the detected level of the power with a threshold and directing the power to the charging circuit based on a result of the comparison. The apparatus directs the power received from the at least a second source to the charging circuit by comparing the detected level of the power with the threshold and directing the power to the charging circuit based on a result of the comparison.
Abstract:
A programmable delay circuit capable of providing a delay with integer and fractional time resolution is described. In one exemplary design, an apparatus includes first and second delay circuits. The first delay circuit provides a first delay of an integer number of time units. The second delay circuit couples to the first delay circuit and provides a second delay of a fraction of one time unit. The first delay circuit may include multiple unit delay cells coupled in series. Each unit delay cell may provide a delay of one time unit when enabled. The second delay circuit may have first and second paths. The first path may provide a shorter delay when selected, and the second path may provide a longer delay when selected. The second path may be coupled to at least one dummy logic gate that provides extra loading to obtain the longer delay for the second path.