Abstract:
The present invention provides a sensor having, one or more optical slab waveguides having one or more target regions. The target regions may interact with gas molecules or trap, entrain or capture one or more targets of interest. The optical slab waveguides are adapted to receive one or more input optical beams from one or more light sources to create a plurality of propagating optical waves in optical slab waveguide. The propagating optical waves interact with said one or more target regions to create an optical output wavefront that may be in the form of a diffraction pattern. The target regions may be functionalized with an antibody, polymer, cell, tissue, or biological material.
Abstract:
Provided is a sensor platform that includes a substrate, a plurality of nanochannels disposed on the substrate, and a plurality of electrodes, a waveguide disposed on the substrate and an analysis chamber and a reference chamber disposed on the substrate. Each electrode extends substantially across a width of the plurality of nanochannels. At least one analysis optical resonator is disposed in the analysis chamber and is optically coupled to at least a portion of the waveguide. The at least one analysis optical resonator is in fluid communication with at Ieast one of the plurality of nanochannels. At least one reference optical resonator is disposed in the reference chamber and is optically coupled to at least a portion of the waveguide. The at least one reference optical resonator is in fluid communication with at least one other of the plurality of nanochannels.